Soil, Groundwater, and Tier II Vapor Intrusion Assessment Report

Parcel 40
Port of Tacoma

Project Number: 013PT-006 TO3

Prepared for:
Port of Tacoma
1 Sitcum Plaza
Tacoma, WA 98421

January 27, 2022

Prepared by:

Crete Consulting Incorporated, PC 16300 Christensen Road, Suite 214 Tukwila, WA 98188 www.creteconsulting.com

Soil, Groundwater, and Tier II Vapor Intrusion Assessment Report

Parcel 40
Port of Tacoma

Project Number: 013PT-006 TO3

Prepared by:	
Rusty Jones, Project Geologist	

Reviewed by:

Grant Hainsworth, P.E., Principal

Prepared by:

January 27, 2022

Crete Consulting Incorporated, PC 16300 Christensen Road, Suite 214 Tukwila, WA 98188 www.creteconsulting.com

Table of Contents

1	Introd	luction .	1-1
	1.1	Prope	ty History1-1
	1.2	Previo	us Cleanup Activities1-2
	1.3	Adjace	nt Properties1-3
	1.4	Site Sc	reening Levels1-4
2	Invest	igation .	Activities and Results2-5
	2.1	Vapor	Intrusion Assessment
		2.1.1	Tier I: Volatile Organic Compound Groundwater Sampling 2-5
		2.1.2	Tier II: Indoor and Ambient Air Sampling 2-6
		2.1.3	Sub-Slab Vapor Sampling2-7
	2.2	Soil an	d Groundwater Investigation 2-7
		2.2.1	Direct Push Investigation 2-8
		2.2.2	Monitoring Well Installation2-10
		2.2.3	October Site-Wide Gauging2-10
		2.2.4	Tidal Study2-11
		2.2.5	November 2020 Monitoring Well Groundwater Sampling . 2-11
		2.2.6	Investigation-Derived Waste 2-12
3	Site C	s3-1	
	3.1	Geolog	gy 3-1
	3.2	Hydro	geology3-1
		3.2.1	Site Groundwater Levels3-2
		3.2.2	Groundwater Flow
4	Conce	ptual Si	te Model4-1
	4.1	Nature	e and Extent of Contamination 4-1
		4.1.1	Groundwater4-1
		4.1.2	Soil4-2
		4.1.3	Vapor4-2
		4.1.4	Contaminants of Concern 4-3
		4.1.5	Sources4-3
	4.2	Exposi	ure Assessment4-4
		4.2.1	Current and Potential Land and Resource Uses 4-5
		4.2.2	Groundwater4-5
		4.2.3	Soil4-6
		4.2.4	Vapor4-6
		4.2.5	Potential Receptors and Exposure Pathways 4-6
	4.3	Cleanu	ıp Standards 4-6
		4.3.1	Cleanup Levels4-7

	4.4	Point of Compliance	. 4-8
5	Recon	nmendations	. 5-1
6	Refere	ences	. 6-1

List of Tables

Table 1	Summary of Indoor Air, Ambient Air, and Sub-Slab Vapor Sample Results
Table 2	Monitoring Well Groundwater Analytical Results - March 2020
Table 3	Soil Analytical Results - 2020
Table 4	Direct Push Groundwater Analytical Results - 2020
Table 5	Monitoring Well Groundwater Analytical Results - November 2020
Table 6	Monitoring Well Field Parameters - November 2020

List of Figures

Figure 1	Vicinity Map
Figure 2	Historical Petroleum Infrastructure
Figure 3	Air and Subslab Vapor Sample Locations
Figure 4	Soil and Groundwater Investigation Locations
Figure 5	Net Groundwater Flow
Figure 6	TPH-DRO/ORO Groundwater Plume Map
Figure 7	TPH-DRO/ORO with Silica Gel Cleanup Groundwater Plume Map
Figure 8	TPH-GRO Groundwater Plume Map
Figure 9	Benzene Groundwater Plume Map
Figure 10	Petroleum Impacted Soil Areas

List of Appendices

Appendix A Select Historical Documents

Appendix B Indoor and Ambient Air Sampling Report and Sub-Slab Vapor Sample Analytical Data

Appendix C Borehole Logs and Survey Data

Appendix D Groundwater Sampling Forms and Field Notes

Appendix E Soil and Groundwater Laboratory Reports

Appendix F Review of NWTPH-Dx Chromatograms

Appendix G Tidal Study

1 Introduction

This document presents a Tier II vapor intrusion (VI) site assessment and the results of a soil and groundwater investigation performed by Crete Consulting Incorporated, PC (CRETE) on behalf of the Port of Tacoma (Port) at the Parcel 40 Maintenance Building (site)¹. The Site is located at 1675 Lincoln Avenue, Tacoma, Washington 98421 (Figure 1). It is currently leased to SSA Terminals and operated as a maintenance facility for a marine cargo terminal. The property is listed (Facility Site ID 66987611) with the Washington State Department of Ecology (Ecology). This report documents investigation activities conducted during 2020 and incorporates data from multiple previous investigations and interim actions.

1.1 Property History

The Site appears to have been undeveloped until the 1920s (tacomaMAP 2021). The adjacent property² to the east was owned, developed, and operated as a railyard between 1905 and 1980 by Chicago, Milwaukee, St. Paul, and Pacific Railroad Company. The railyard was the company's primary west coast facility for train maintenance and repair (Ecology 1991). According to the 1940, 1950, and 1973 aerial imagery, rail lines associated with the railyard crossed onto the northern corner of the Site (tacomaMAP 2021).

In the 1930s, the True's Oil Company constructed a 1.25 million gallon above-ground fuel storage tank on the subject property. In 1942 Chicago, Milwaukee, St. Paul, and Pacific Railroad Company purchased the True's Oil Company facility (Appendix A, drawing 5A-531). Available aerial imagery and historical drawings from the 1940s show the tank surrounded by an earthen berm for secondary containment (tacomaMAP 2021, Appendix A). Several pipelines ran to and from the tank area; available drawings show pipes labeled "Diesel oil," "Oil & Steam," and "Steam (Ret.)" (Port of Tacoma 1983). Select historical documents are included in Appendix A. The timing of tank construction is consistent with the beginning of widespread use of diesel locomotives. Figure 2 illustrates the former location of the True's Oil tank and piping; historical fuel storage tank locations are pulled from historical documents (Appendix A). In 1979, the Port acquired the property from Union Pacific Railroad, successor to the Chicago, Milwaukee, St. Paul, and Pacific Railroad Company. The True's oil tank was removed in about 1981 and the associated piping located in the vicinity of Building 600 is believed to have been removed in about 1984 (Port of Tacoma 1983; Appendix A). The extent of underground piping removal in this area is not known.

The current Site infrastructure was constructed in the early 1980s during property redevelopment for Tacoma Terminals, Inc. (known later as Sealand, Maersk, and finally APMT), a marine terminal operator. The primary structure is a large service garage now known as Building 600 (McGranahan et al. 1984). The northeast end of Building 600 was built over the former footprint of the True's Oil tank (Figure 2). Construction included installation of a 3,000-gallon

¹ Tax parcel no. 8950000221 and 8950000231.

² Tax parcel no. 5000350690.

waste oil underground storage tank (UST) on the south side of Building 600 and the installation of a 20,000-gallon diesel UST and a 1,000-gallon gasoline UST at a fuel shed located about 70 to 120 east of the easternmost corner of Building 600. The 3,000 gallon waste oil UST was removed in 1998. The diesel and gasoline USTs are still in use by the current tenant, SSA Marine, to fuel hustlers and trucks³.

The Site surface is currently paved with asphalt and concrete and is generally flat at an elevation of approximately 18 to 19 feet Mean Lower Low Water (MLLW). To the north is East 11th Street and further north is the marine terminal yard. To the east is a paved lot where terminal cargo is staged adjacent to Milwaukee Way and the South Intermodal Yard. To the south is Lincoln Avenue, where truck traffic enters/exits the Port terminals. To the west is the Puyallup River, which flows north to Commencement Bay.

1.2 Previous Cleanup Activities

In August 1983, a strong fuel odor was noted in a test pit completed to support property redevelopment. The test pit (TP-20) was located in the area where the 3,000-gallon waste oil tank was later installed (Hart Crowser 1983).

In the late 1990s, a lube oil line running between the fuel shed and Building 600 was discovered to be leaking by terminal personnel. The line was subsequently abandoned in place. The dates of release, the release volume, and abandonment methods are unknown (GCI 2000).

In December 1998, the 3,000-gallon waste oil UST was removed to meet new Ecology guidelines. During tank excavation a strong diesel odor was noted and free petroleum product was visible on the surface of the groundwater. The assessment report concluded that the release encountered in the excavation of the waste oil tank was from previous releases and was not due to a release from the waste oil tank (CETI 1999). A Phase 2 investigation including soil sampling and monitoring well installation with subsequent groundwater sampling was conducted in January 2000 (GCI 2000). The investigation found that the soil and groundwater contained dieseland oil-range petroleum. Following that investigation, the Port reported the discovery of soil and groundwater containing diesel and oil at the Site to Ecology (Port of Tacoma 2000). Additional investigation work, led by the Port, culminated in a focused feasibility study that presented a preferred remedial action of monitored natural attenuation in conjunction with a passive free product recovery system (Geoengineers 2001, 2002).

Passive skimming activities to recover free product were conducted at the Site by Shaw Environmental from May 2002 through at least November 2003 (termination period undetermined). Skimming activities were conducted using a peristaltic pump and tubing extended into the free product at recovery wells ITC-RW-1 and ITC-RW-2. A total of 16 gallons of

³ AMPT vacated the property in 2017, SSA Marine took occupancy shortly thereafter.

free product was recovered during this documented period (Shaw 2003). There are no records of free product recovery after December 2003. The last groundwater sampling event was conducted in November 2002.

In 2019, soil and groundwater sampling was conducted by Anchor QEA on behalf of the Port to support decommissioning of the remaining 20,000-gallon diesel UST and the 1,000-gallon gasoline UST. Decommissioning was being pursued by the Port due to the age of the two tanks. A UST assessment was completed in August 2019 (Anchor QEA 2020). During the same period, a round of groundwater samples was collected from the groundwater monitoring well network installed in early 2000s (Anchor QEA 2019). Soil and groundwater samples were analyzed for gasoline-range organics (TPH-GRO), diesel- and oil-range organics (TPH-DRO/ORO) and benzene, toluene, ethylbenzene, and xylenes (BTEX). The UST report suggested that the impacts near the USTs were likely associated with historical contamination related to petroleum storage tanks and pipelines. Benzene was detected above the vapor intrusion groundwater screening criteria at monitoring well GEI-MW-1 (Figure 2), located just outside the eastern wall of Building 600⁴. The report identified data gaps in the groundwater plume mapping and recommended performing a tidal study, sampling for natural attenuation indicators, and a vapor intrusion assessment at Building 600 due to the presence of elevated benzene at monitoring well GEI-MW-1 (Anchor QEA 2019).

1.3 Adjacent Properties

The eastern adjacent site is known as the Former Milwaukee Way Railyard⁵ and was owned by Union Pacific Railroad until 1995. The property is currently owned by the Port of Tacoma and is listed as Cleanup Site 5002 and Facility ID 1251 with Ecology. The Former Milwaukee Railyard had historical petroleum hydrocarbon contamination with up to 3 separate plumes of free phase product, primarily diesel fuel. Contaminated soils have been excavated from the site and free product removal has been conducted by multiple methods. Additionally, wood preserving chemicals, such as pentachlorophenol, chromium, and arsenic have been reported in the soil and groundwater (Ecology 2021). Ecology has determined that NAPL remains in the groundwater at this site (Ecology 2011) and the remaining residual NAPL is not impacting groundwater (Shaw 2008).

A former 14,000-gallon diesel UST and associated loading racks on the Railyard were located approximately 200 feet to the northeast of Building 600 and an area of known contamination was documented in the Prospective Purchaser Consent Decree (Ecology 1995) as indicated on Figure 2. Documented contamination included a TPH soil concentration of 46,000 mg/kg at 7 feet

٠

 $^{^4}$ Benzene results from GEI-MW-1 were 42.2 μ g/L (sample collection on August 21, 2019), compared to the MTCA Method C Cancer vapor intrusion screening level of 24 μ g/L.

⁵ Also known as the Union Pacific Railroad site.

below ground surface (bgs) at AGI TP-40 (AGI 1990), located immediately north of the former diesel UST and free product located slightly further to the northeast.

1.4 Site Screening Levels

The site qualifies as an industrial property (WAC 173-340-745), therefore industrial screening levels are appropriate for the site. Site soil data are compared to Model Toxics Cleanup Act (MTCA) industrial screening levels and site groundwater data is compared to screening levels protective of surface water, vapor intrusion, and groundwater exposure.

Vapor data results are compared to MTCA screening levels and American Conference of Governmental Industrial Hygienists (ACGIH) screening levels for Total Petroleum Hydrocarbons (TPH) air-phase petroleum hydrocarbons. Screening levels are presented on the analytical data summary tables (Tables 1 through 5).

2 Investigation Activities and Results

Groundwater monitoring well redevelopment and sampling activities conducted in 2019 (AnchorQEA 2019) confirmed the presence petroleum contamination in soil and groundwater and also identified benzene in groundwater at GEI-MW-1 exceeding the vapor intrusion screening level. The investigation activities described herein were designed to define the extent of soil and groundwater contamination and assess vapor intrusion. All work was completed based on the *Direct Push Soil, Groundwater, and Tier II Vapor Intrusion Assessment Work Plan* (CRETE 2020). This section discusses the results of the vapor intrusion assessment (Section 2.1) and the soil and groundwater investigation (Section 2.2).

2.1 Vapor Intrusion Assessment

The vapor intrusion assessment followed *Guidance for Evaluating Soil Vapor Intrusion in Washington State: Investigation and Remedial Action* (Ecology 2009). The guidance outlines a two-tiered approach; Tier I: compare shallow groundwater concentration data to generic groundwater screening levels (SLs) to evaluate the need for further VI assessment; and, Tier II: conduct indoor air sampling. CRETE conducted a Tier I and Tier II VI assessment. The Tier II assessment and the soil and groundwater sampling plan is documented in the *Direct Push Soil, Groundwater, and Tier II Vapor Intrusion Assessment Work Plan* (CRETE 2020).

The vapor intrusion pathway was assessed by collecting and analyzing groundwater samples for volatile organic compounds in and around the area of elevated benzene detected in monitoring well GEI-MW-1 in 2019 (Tier I) and by performing subsequent ambient and indoor air sampling in Building 600(Tier II). A site-specific TPH MTCA cleanup level was calculated for screening the indoor air results. Measured TPH concentrations (sum of APH ranges and VOCs) exceeded the site-specific TPH screening level in all five indoor air samples (Table 1). As a result, the consultant recommended that the Port plan for a proactive solution to minimize vapor intrusion (EMB 2020). The Port decided to install a sub-slab depressurization system (SSDS). The SSDS is designed to achieve lower sub-slab air pressure relative to indoor air pressure by using fans or a blower to draw air from beneath the slab. During design and permitting work for the SSDS, two sub-slab vapor samples were collected to evaluate the potential need for a Puget Sound Clear Air Agency (PSCAA) permit and emission controls. The data are provided in this report for reference. Design and permitting of the SSDS are discussed in a separate report (CRETE 2021).

2.1.1 Tier I: Volatile Organic Compound Groundwater Sampling

Based on the 2019 identification of benzene in groundwater at GEI-MW-1 that exceeded the vapor intrusion screening level, groundwater samples were collected from select monitoring wells to assess whether other volatile organic compounds could also present a vapor intrusion risk. In March 2020, low-flow groundwater samples were collected from 4 monitoring wells (GEI-MW-1, GEI-MW-5, GEI-MW-8, and GEI-MW-9) and one recovery well (ITC-RW-1) and submitted

to Friedman & Bruya (FBI) for analytical testing. ITC-RW-1 exhibited measurable free phase product (0.89-feet thickness) and was initially sampled in the field, but the sample was not submitted for analysis due to presence of free phase product. Samples were submitted for analysis of volatile organic constituents (VOCs) by EPA Method 8260 (conducted by FBI) and volatile petroleum hydrocarbons (VPH) by Method NWVPH (conducted by Freemont Analytical laboratories). Groundwater sample results from the well GEI-MW-1 indicated that benzene and volatile petroleum hydrocarbons (VPH) are present at concentrations above the MTCA groundwater screening level for protection of indoor air (24 micrograms per liter [μ g/L] and 6.4 μ g/L, respectively). Measured benzene concentrations in groundwater from GEI-MW-1 ranged between 35.7 μ g/L (March 26, 2020) and 42.2 μ g/L (August 21, 2019; AnchorQEA 2019). VPH (Aliphatic (C8-C10) + (C10-C12)) was detected at 2 site wells, GEI-MW-1 and GEI-MW-9 at concentrations of 268.2 μ g/L and 201.3 μ g/L, respectively. Well locations are shown on Figure 2. Based on these exceedances of the screening criteria, a Tier II assessment was performed.

2.1.2 Tier II: Indoor and Ambient Air Sampling

In July 2020, EMB Consulting, LLC performed indoor and ambient air sampling at Building 600. Sampling was conducted over a holiday weekend (July 4 and 5) when Building 600 was not in use. A brief summary of the results is presented below. The full report is provided in Appendix B. Sample locations are indicated on Figure 3 and analytical results are provided in Table 1.

Two ambient air samples were collected, one from the upwind side of Building 600 (east) and one downwind (west). The ambient air samples did not have detectable concentrations of VOCs, with the exception of naphthalene, which was detected in both samples.

Four indoor air samples were collected: one in each working bay (east and west), one in the central office area, and one in the parts room. VOCs were detected above laboratory reporting levels (RLs) in all indoor samples, but none were detected at concentrations above the MTCA Method C indoor air screening levels for industrial properties. VOCs commonly found in paint (toluene, ethylbenzene, and xylenes) were identified in higher concentrations in the West Bay of Building 600, which is close to the paint booth. Sample locations are shown in Figure 3.

Air-Phase Petroleum Hydrocarbon (APH) EC5-8 aliphatics and EC9-12 aliphatics were detected in all indoor air samples. APH EC9-10 aromatics were not identified in any indoor air sample above the RL. The default MTCA indoor air screening level for TPH compounds (or APH fractions) is 140 ug/m3. A site-specific TPH MTCA cleanup level of 310 μ g/m³ was calculated for screening the APH results. APH ranges and detectable VOCs exceeded the site-specific TPH screening level in all five indoor air samples (Table 1). The APH EC5-8 aliphatic concentrations are higher in the west portion of Building 600 than the east portion; APH EC9-12 aliphatics are higher in the east portion of the Building 600 than the west portion. The reason for this difference cannot be determined based on the available data. There were chemicals present in east and west building bays, but not in the central areas sampled (offices). Many of the chemical products onsite are petroleum based, but considering the types and volumes of products observed, these chemical

products are not likely to generate concentrations of APH aliphatics identified across the building space. Based on the results of the indoor air assessment, it appears likely that petroleum hydrocarbons in soil and groundwater beneath the building are impacting indoor air through vapor intrusion (EMB 2020).

2.1.3 Sub-Slab Vapor Sampling

In October 2020, two sub-slab samples were collected from below the concrete slab of Building 600. One sample was collected in the Parts Room (SSV-Parts) and one sample was collected in the East Bay (SSV-E Bay), as shown on Figure 3. These data are provided in Table 1 and Appendix B. APH EC5-8 aliphatics were detected beneath the East Bay while APH EC9-12 aliphatics were detected below the Parts Room. MTCA does not have final screening levels for sub-slab samples; draft values are included in the Guidance for Evaluating Soil Vapor Intrusion in Washington State (Ecology 2018a) and a generic TPH sub-slab screening level of 4,700 μg/m³ was provided in Implementation Memorandum 18 (Ecology 2018b). The TPH results for the sub-slab samples were below this screening level. Sub-slab sample results were not detected above laboratory reporting limits for BTEX compounds and laboratory reporting limits were below sub-slab screening levels (Table 1). Although the sub-slab vapor samples were below screening levels, TPH was above the screening level in indoor air and benzene, TPH-GRO, and TPH-DRO were present above cleanup levels in soil and groundwater adjacent to and likely below the building, including the presence of free product. Additional sub-slab vapor sampling would likely encounter elevated concentrations since sub-slab and indoor air sample results can vary spatially and temporally depending on many factors (e.g. barometric pressure and trend, temperature, warehouse bay doors open/closed).

2.2 Soil and Groundwater Investigation

Soil and groundwater sampling were conducted from March 2020 through November 2020 in the following phases.

- March 26, 2020: Tier I VOC sampling, discussed in Section 2.1.1, included collection of groundwater samples from 5 site monitoring wells, GEI-MW-1, GEI-MW-5, GEI-MW-8, GEI-MW-9 and ITC-RW1; analytical results are summarized in Table 2.
- June 12 and August 5 through 6, 2020: Two days of direct push investigation were performed to collect soil and groundwater from borehole and temporary wells (Section 2.2.1) to refine the understanding of site conditions and the extent of subsurface contamination; analytical results are summarized in Tables 3 and 4.
- October 4, 2020: Two additional monitoring wells (MW-10 and MW-11) were installed to address data gaps (Section 2.2.2), and water level and light non-aqueous phase liquid (LNAPL) gauging was conducted on October 25, 2020 (Section 2.2.3).

 November 2020: A tidal study (November 2 through 6) and groundwater sampling (November 19 through 20) of the monitoring well network (ten wells) were conducted (Sections 2.2.4 and 2.2.5). Groundwater samples were collected from all site monitoring wells (GEI-MW-1, GEI-MW-2, GEI-MW-3, GEI-MW-4, GEI-MW-5, GEI-MW-6, GEI-MW-8, GEI-MW-9, MW-10 and MW-11). Table 5 summarizes analytical results and Table 6 summarizes field parameters.

Borehole logs are provided in Appendix C. Groundwater sampling forms are included in Appendix D. Laboratory reports for soil and groundwater data are provided in Appendix E.

2.2.1 Direct Push Investigation

The initial direct push mobilization on June 12, 2020 included five boreholes in the immediate vicinity of GEI-MW-1 along the northeast side of Building 600 to determine the extent of elevated benzene in groundwater (SB-1 through SB-5), and four locations around the remaining perimeter of the building to define the extent of the elevated TPH in groundwater (SB-6 through SB-9). The second mobilization on August 5 and 6, 2020 included eight borehole locations and was intended to fill in data gaps and step out from locations with known impacts (SB-10 through SB-16). ESN Northwest, a Washington licensed driller, used a direct push technology (DPT) soil coring rig to collect soil and groundwater samples. Soil borehole locations are shown on Figure 4.

Soil cores were collected on 5-foot intervals to a depth of 15 feet bgs at all locations. Four locations, SB-01D, SB-08D, SB-10D, and SB-12D were advanced to 25-feet bgs for investigation into the saturated zone.

Various hydrocarbon odors and/or sheens were noted at 5 to 15 feet bgs at SB-01, SB-03, SB-05, SB-06, at 4.5 to 15 feet bgs at SB-02, SB-04, at 10.9 to 15 feet bgs at SB-07, and at 6.5 to 15 feet bgs at SB-09, 7.7 to 15 feet bgs at SB-11, and 3.8 to 14 feet bgs at SB-13 (See borehole logs in Appendix C for specific observations). Based on PID-screening measurements and odor and visual observations, up to two soil samples were collected from each soil borehole. Where there was no indication of contamination, a soil sample was collected at the water table. Soil sample depths and results are provided in Table 3 and the laboratory reports are provided in Appendix E.

All soil samples from SB-01 through SB-05, and SB-09 were analyzed for diesel- and oil-range organics (TPH-DRO/ORO) by Method NWTPH-Dx, gasoline range organics (TPH-GRO) by Method NWTPH-Gx, and for BTEX by EPA Method 8021 in areas of suspected benzene impacts. Soil samples from SB-06, SB-07, and SB-08 were analyzed for TPH-DRO/ORO. Soil sample depths and results are provided on Table 3 and the laboratory report is provided in Appendix E.

Grab groundwater samples were collected from all soil borehole locations using a stainless steel screen lowered into the borehole. Dedicated HDPE tubing and a peristaltic pump were used to purge the temporary well for typically 5 to 10 minutes or until the purge water became generally less turbid, whichever occurred first. Temporary wells were screened from 11 to 15 feet bgs.

Deeper grab groundwater samples were collected at 21 to 25 feet bgs at SB-01D, SB-08D, SB-10D, and SB-12D. All grab groundwater samples were analyzed for TPH-DRO/ORO (with and without silica gel column [SGC]), TPH-GRO, and BTEX.

Results are summarized in Tables 3 and 4, sample locations are shown on Figure 4, and laboratory reports are provided in Appendix E.

2.2.1.1 June and August 2020 Direct Push Soil Analytical Results

Soil concentrations of TPH-DRO/ORO (combined diesel- and oil-range petroleum) exceeded the MTCA Method A screening level of 2,000 mg/kg at 9 borehole locations; concentrations ranged from 44,700 mg/kg (duplicate of location SB-03-10) to below the RL of 250 mg/kg. Soil concentrations of TPH-GRO exceeded the MTCA Method A screening level of 30 mg/kg at 8 borehole locations; concentrations ranged from 3,000 mg/kg (location SB-01-09) to below the RL of 5 mg/kg. A review of chromatograms suggests that the TPH-GRO concentrations are the result of a middle distillate rather than gasoline. These data are discussed further in Appendix F.

Benzene, ethylbenzene, and total xylenes exceeded screening levels from soil samples collected from borehole SB-03-10 (and the duplicate sample) and SB-04-08; ethylbenzene exceeded the screening level in a soil sample collected from SB-01-09. These three locations are co-located with the highest TPH-DRO/ORO and TPH-GRO exceedances.

2.2.1.2 June and August 2020 Direct Push Groundwater Analytical Results

Temporary groundwater grab samples were collected at 2 depths, approximately 12 feet bgs and 25 feet bgs. Deep groundwater grab samples were collected from soil borehole locations SB-01, SB-08, SB-10 and SB-12, these are noted with a "D" in the sample name shown on Table 4.

Shallow groundwater concentrations of TPH-DRO/ORO analyzed without silica gel cleanup exceeded the MTCA Method A groundwater screening level of 500 μ g/L at 14 of 16 borehole locations. Detected concentrations of TPH-DRO/ORO ranged from 610 μ g/L (location SB-8) to 62,000,000 μ g/L (location SB-05). The sample from SB-05 was influenced by the presence of free phase hydrocarbons; the next highest TPH-DRO/ORO concentration was 1,700,000 μ g/L (location SB-3). Groundwater samples were also analyzed with silica gel cleanup. Of the groundwater samples detected above screening levels without silica gel cleanup, only the groundwater sample from SB-8 was below screening levels with the silica gel cleanup.

Deep groundwater concentrations of TPH-DRO/ORO analyzed without silica gel cleanup exceeded the MTCA Method A groundwater screening level of 500 μ g/L at 3 of the 4 borehole locations. Concentrations detected at SB-10D were below the screening level (detection of 400 μ g/L at 3 of the 4 borehole locations.

-

 $^{^6}$ Groundwater concentration of 62,000,000 µg/L TPH-DRO/ORO indicative of free phase hydrocarbons present. Field notes for this groundwater sample (SB-05-0620) indicate moderate to strong hydrocarbon odor, hydrocarbon sheen, and "yellowish, oily water" on purged sample water.

μg/L). All deep groundwater samples were below screening levels (SB-01D, SB-8D, and SB-12D) when silica gel cleanup was used.

Shallow direct push groundwater sample concentrations of TPH-GRO exceeded the MTCA Method A groundwater screening level of 800 μ g/L at 7 locations as shown on Table 4. Detected concentrations of TPH-GRO ranged from 7,500 μ g/L (at location SB-05) to 280 μ g/L (at location SB-13). Direct push groundwater sample concentrations of benzene exceeded the screening level of 1.6 μ g/L at 3 locations (SB-01, SB-05, and SB-09); concentrations ranged from 22 μ g/L (SB-01) to non-detect. A review of chromatograms suggests that the TPH-GRO concentrations are the result of a middle distillate rather than gasoline. These data are discussed further in Appendix F.

Deep direct push groundwater sample concentrations of TPH-GRO and BTEX compounds were below the MTCA Method A groundwater screening levels.

2.2.2 Monitoring Well Installation

Following the results of the direct push investigation, two additional groundwater monitoring wells were installed to better define the downgradient extent of the groundwater impacts toward the Puyallup River. MW-10 was installed along the western end of Building 600, downgradient of impacted areas and near borehole location SB-08. MW-11 was installed to the south of soil boreholes SB-11 and SB-12. TPH-DRO/ORO concentrations in groundwater were near the CUL in SB-8 and were elevated at SB-11 and SB-12. Well locations are shown on Figure 4.

On October 4, 2020, CRETE and Holocene Drilling, a Washington licensed driller, installed the monitoring wells using hollow stem auger drilling methods. A 1.5 feet length split-spoon core sample was collected every 2.5 feet in depth starting at 2.5 feet bgs for limited logging and sampling purposes.

Soils were logged and PID-screened for organic vapor impacts. Monitoring well logs for MW-10 and MW-11 can be found in Appendix C. Well depths and screened intervals are provided in Table 6. One soil sample was collected from the MW-11 borehole at the vadose/saturated zone interface. The sample was analyzed for TPH-DRO/ORO, TPH-GRO, and BTEX. Soil sample results are provided on Table 3 and the laboratory report is provided in Appendix E. Results from the one soil sample collected at MW-11 were non-detect for all analytes.

2.2.3 October Site-Wide Gauging

On October 25, 2020 CRETE conducted site-wide gaging of static groundwater elevations at all ten monitoring wells and two recovery wells. LNAPL was observed at 3 wells, monitoring well GEI-MW-9 (0.02 feet thickness) and recovery wells ITC-RW-1 (0.82 feet thickness) and ITC-RW-2 (2.29 feet thickness).

2.2.4 Tidal Study

Between November 2 and November 6, 2020, CRETE conducted a tidal study at Parcel 40 using the existing monitoring well network (GEI-MW-1, GEI-MW-2, GEI-MW-3, GEI-MW-4, GEI-MW-5, GEI-MW-6, GEI-MW-8, GEI-MW-9, MW-10 and MW-11). Monitoring well locations used in the tidal study and the net groundwater flow path are shown on Figure 5. The tidal study was conducted to evaluate the extent of tidal influence across the Site and to develop appropriate tidal lag times for sampling of tidally influenced monitoring wells. Methods and results of this tidal study are provided in Appendix G. Results are summarized in Section 3.2.

2.2.5 November 2020 Monitoring Well Groundwater Sampling

On November 18 through November 20, 2020, CRETE collected groundwater samples from all ten monitoring wells (GEI-MW-1 through GEI-MW-6, GEI-MW-8, GEI-MW-9, MW-10, and MW-11)⁷ using low-flow sampling methods. Groundwater samples were collected between 2 and 4.5 hours after low-tide based on the tidal study efficiency and lag times in conjunction with tides measured at the NOAA station 9446484 in Tacoma, WA during the November 18 to 20 sample period. All groundwater samples were analyzed for TPH-DRO/ORO (with and without SGC), TPH-GRO, and BTEX. Groundwater monitoring results are presented in Table 5 and monitoring well field parameters are presented in Table 6. Groundwater sampling forms are included in Appendix D.

Detected concentrations of TPH-DRO/ORO in groundwater samples without SGC ranged from 370 μ g/L (GEI-MW-4/5) to 30,600 μ g/L (GEI-MW-1) and exceeded the screening criteria at 7 monitoring wells. Groundwater concentrations exceeded the TPH-GRO MTCA Method A screening level at 1 monitoring well at a concentration of 1,700 μ g/L (GEI-MW-1). Concentrations of TPH-DRO/ORO with SGC ranged up to 8,500 μ g/L (GEI-MW-1) and exceeded the MTCA Method A screening level at 3 monitoring wells.

At GEI-MW-1, the concentration of benzene, 46 μ g/L, exceeded the screening level. Concentrations of toluene, ethylbenzene, and total xylenes were detected above the RLs at GEI-MW-1 but below screening levels. There were no other monitoring wells with BTEX concentrations above the laboratory RLs (Table 5).

LNAPL was observed at ITC-RW-1, ITC-RW-2, and GEI-MW-9 on October 25, 2020 (Table 6). ITC-RW-1 and ITC-RW-2 were not sampled during November 2020 due to product thickness. GEI-MW-9 did not exhibit LNAPL on November 20, 2020 and was sampled with the other wells.

⁷ Monitoring well identification GEI-MW-7 is not used at the site.

2.2.6 Investigation-Derived Waste

Throughout the 2020 investigations, all decontamination wash and rinse waters, soil core cuttings, well installation cuttings, and purged groundwater was captured and containerized in 15-gallon and 55-gallon drums, labelled, and temporarily staged at the Site. On November 23, 2020, DH Environmental collected the containers of waste, transported them to Lafarge North America at 5400 West Marginal Way in Seattle for disposal.

3 Site Conditions

This section presents site geological and hydrogeological conditions and overall groundwater flow patterns.

3.1 Geology

The Site was originally a tidal marsh within the Puyallup River delta. Typical reference documents regarding filling activities in the tide flats, such as the Geology of the Port of Tacoma, do not provide documentation for this area (Hart Crowser 1974). A review of available historical aerial photography suggests that some filling, and construction of True's Oil tank, was completed sometime between 1931 and 1940 (tacomaMAP 2021).

The remainder of the Site area appears to have been filled in the early 1980s associated with marine terminal site redevelopment and construction of the current structures. In the immediate vicinity of Building 600, the upper 3 to 5 feet of fill consist of Building 600 preload material that was reused as structural fill (Appendix A; Port of Tacoma 1983).

The former tidal marsh surface was not distinguishable from the above fill material in most boreholes advanced at the site. At monitoring well location MW-11 a distinct clayey silt unit was identified at 10 feet bgs, likely representing the former tidal marsh surface. In some boreholes, a thin silt unit about 1 foot thick was identified between 7 and 10 feet below grade. In other boreholes, the silt content increased at about 7.5 to 11.5 feet below grade and the lithology was described as a sandy silt or silty sand. Decomposed wood or root matter was observed at 13.8 feet below grade at SB-08 and at 14.3 feet below grade at SB-10, suggesting organic plant material, likely from the marsh.

The soil unit above the former tidal marsh surface consists predominantly of gravelly sand to sand, consistent with structural fill placement, with some construction debris. The soil unit below the former tidal marsh consists of fine- to coarse-grained sand and silty sand. These units will be referred to as the "Upper Sand" and "Lower Sand".

3.2 Hydrogeology

Groundwater occurs in the Upper Sand under unconfined conditions and in the Lower Sand under confined or semi-confined conditions, due to the intermittent clayey-silt units. Groundwater at the site appears to flow toward the Puyallup River to the west/southwest and to the north towards East 11th Street, with an apparent groundwater divide to the east-northeast of Building 600. The northward component of groundwater flow is consistent with the groundwater flow direction report for the Milwaukee Railyard (Shaw 2008). Net groundwater elevation contours are presented in Figure 5.

3.2.1 Site Groundwater Levels

Depth to groundwater at the Site is generally in the range of 8 to 12 feet bgs. Based on transducer data from the tidal study, groundwater elevations appear to fluctuate as much as about 3 feet through a tidal cycle, with the largest rate of change seen at MW-10, the well closest to the Puyallup River. Water level depths and elevations for the November groundwater sampling event are presented in Table 6. Tidal study procedures, results, and data analysis are documented in Appendix G.

3.2.2 Groundwater Flow

To determine the Site groundwater flow direction(s), data from the tidal study (Appendix G) was used calculate net groundwater flow. The water elevation data recorded from 5:06 PM on November 2 through 9:24AM on November 6 was averaged at each well where the data was recorded and the data were contoured to map the average water elevations. Figure 5 depicts the net groundwater flow determined from this tidal study. Groundwater flow on the western half of the site flows west/southwest towards the Puyallup River. Groundwater flow to the east and northeast of Building 600 generally flows north with a groundwater high, or mound, at the very east end of Building 600.

4 Conceptual Site Model

This section summarizes the nature and extent of contamination, suspected sources, and identifies potential human and environmental risk exposure pathways present on the Site. The purpose of the conceptual site model (CSM) is to synthesize the findings of the site investigation so that the CSM can be used as a tool to identify data gaps and to develop and evaluate cleanup approaches.

4.1 Nature and Extent of Contamination

The Site has been impacted by releases from historical petroleum operations at the property resulting in elevated concentrations of TPH-DRO/ORO, TPH-GRO, and benzene in soil and groundwater, and air-phase TPH contributions to indoor air at Building 600.

4.1.1 Groundwater

This discussion of the nature and extent of groundwater contamination incorporates data from samples collected from direct push boreholes in June and August 2020 and samples from monitoring wells collected in March and November 2020.

Groundwater concentrations exceed the MTCA Method A TPH-DRO/ORO screening level in 17 of the 20 direct push groundwater samples when SGC was not used. Groundwater concentrations of TPH-DRO/ORO were below the MTCA Method A screening level at SB-10, SB-10D, and SB-16, the locations closest to the Puyallup River. When SGC was used, concentrations of TPH-DRO/ORO at SB-01D, SB-08, SB-08D, and SB-12D fell below the MTCA Method A screening level.

The existing monitoring well network generally bounds the extent of TPH-DRO/ORO and TPH-GRO contamination with two exceptions. Based on TPH-DRO/ORO with silica gel cleanup, GEI-MW-8 exceeds screening criteria to the north and GEI-MW-9 exceeds screening criteria to the south. Figures 6 and 7 illustrate the TPH-DRO/ORO groundwater plume both without and with silica gel cleanup, respectively.

Groundwater concentrations of TPH-GRO exceed the MTCA Method A screening level in 7 of 20 direct push groundwater samples. TPH-GRO groundwater exceedances were focused around the eastern half of Building 600 with one notable exception at SB-14, shown on Figure 8. Benzene in groundwater was detected above the screening criteria at three locations (SB-01, SB-04, and SB-09), shown on Figure 9. For the temporary groundwater samples collected during this investigation, concentrations of benzene ranged up to 22 μ g/L, toluene up to 10 μ g/L, ethylbenzene up to 27 μ g/L, and total xylenes up to 38 μ g/L. Toluene, ethylbenzene and total xylenes were not detected above screening levels from groundwater samples collected from the direct push boreholes.

Benzene was detected in groundwater samples collected from GEI-MW-1 in March 2020 (28 μ g/L) and November 2020 (46 μ g/L); results exceeded the MTCA Method A and marine surface

water screening criteria. GEI-MW-1 was the only monitoring well to exhibit detections of BTEX above laboratory reporting limits in March or November 2020.

4.1.2 Soil

Soil concentrations from the 2020 investigation exceed MTCA Method A screening levels for TPH-GRO and TPH-DRO/ORO (Table 3 and Figure 10). The highest TPH-GRO results (3,000 mg/kg, SB-01) and TPH-DRO results (44,700 mg/kg, duplicate of SB-03) are generally associated with the eastern half of Building 600 with a few exceptions. SB-13, located northeast of Building 600 and near the Former Milwaukee Railyard also had elevated concentration of both TPH-GRO (1,400 mg/kg) and TPH-DRO/ORO (12,000 mg/kg). There are data points with reported TPH-DRO concentrations below MTCA Method A industrial SLs (GEI-MW-2, GEI-MW-6, P40-UST-01, P40-UST-02) that separate SB-13 from the Building 600 contamination suggesting that the impacts at the site may be from a two separate releases.

Soil concentrations along the northwestern and western areas of the site are not impacted with hydrocarbons or BTEX and reported values are SB-07, SB-08, SB-10, and SB-16 in this area are below laboratory RLs. Soil concentrations of TPH-DRO (8,000 mg/kg; duplicate concentration of 9,400 mg/kg) and TPH-GRO (1,500 mg/kg) at SB-11 in the southwest area of the Building 600 exceed screening criteria.

In the soil samples collected during the 2020 investigation, concentrations of benzene ranged up to 14 mg/kg, toluene up to 5 mg/kg, ethylbenzene up to 20 mg/kg, and total xylenes up to 24 mg/kg. Concentrations of BTEX compounds in soil exceed MTCA Method A screening levels at SB-01, SB-03, and SB-04; no other locations exceed MTCA screening levels. No BTEX soil exceedances were observed or noted in the active UST pad area investigation conducted by Anchor QEA in August 2019 (Anchor QEA 2020).

4.1.3 **Vapor**

Vapors samples collected at the site, discussed in Section 2.1, included indoor air and sub-slab vapor. All indoor air samples contained APHs in the range of C5 through C8 (APH EC5-8 aliphatics) and C9 through C12 (APH EC9-12 aliphatics) above the site-specific TPH MTCA Method C cleanup level of 310 μ g/m³ (Table 1, Figure 3). Though Building 600 is used for equipment maintenance and it is known that products used during routine operations in the building contain TPH, the levels detected in the indoor air samples are not thought to be from these products only (EMB 2020).

Sub-slab samples were collected from two locations in the building; one sample was collected in the Parts Room (SSV-Parts) and one sample was collected in the East Bay (SSV-E Bay) as shown on Figure 3 and Table 1. APH EC5-8 aliphatics were detected beneath the East Bay while APH EC9-12 aliphatics were detected below the Parts Room. These APH results were below the Ecology TPH screening level. Sub-slab sample results were not detected above laboratory reporting limits for BTEX compounds and laboratory reporting limits were below sub-slab screening levels (Table 1). Although the sub-slab vapor samples were below screening levels, TPH was above the

screening level in indoor air and benzene, TPH-GRO, and TPH-DRO were present above cleanup levels in soil and groundwater adjacent to and likely below the building, including the presence of free product. Sub-slab and indoor air sample results can vary spatially and temporally depending on many factors (e.g. barometric pressure and trend, wind, temperature). Due to this uncertainty in air concentration measurements and the presence of significant soil and groundwater contamination, it is reasonable to expect that sub-slab vapor contamination is present and contributing to indoor air.

Groundwater data from GEI-MW-1 indicates that benzene exceeds the vapor intrusion groundwater screening level (GEI-MW-1; Figure 1).

4.1.4 Contaminants of Concern

Contaminants that have been detected above screening levels at Parcel 40 are benzene, ethylbenzene, xylenes, TPH-GRO, and TPH-DRO/ORO. Benzene exceeded screening levels in soil and groundwater while ethylbenzene and xylenes only exceeded screening levels in soil. TPH-GRO and TPH-DRO/ORO exceeded screenings levels in soil and groundwater plus TPH exceeded screening levels in indoor air. As discussed in Appendix F, although TPH-GRO exceeded screening levels in soil and groundwater, there is no known historical use of gasoline at the property and a closer look at the TPH-DRO/ORO results indicates that the TPH-GRO response may have been due to high concentrations of a middle distillate, such as diesel.

4.1.5 Sources

Historical petroleum operations at the site include a number of potential sources (Figure 2):

- The 1.25 million gallon True's Oil above-ground diesel storage tank; including the pump area and associated "oil" and diesel pipelines
- The former 14,000-gallon diesel UST and loading rack located at the former Milwaukee
 Railyard
- Several "oil" and "oil and steam" pipelines that may have carried heavier-end petroleum products such as Bunker C for fueling locomotives prior to diesel use
- The former lube oil line and documented leak
- The former 3,000-gallon waste oil tank associated with Building 600
- The existing 20,000-gallon diesel and 1,000-gallon gasoline USTs and fueling area

The primary source of contamination in the Building 600 area appears to be historical operation of the True's Oil diesel tank. Operation of the True's Oil tank included smaller tanks within the secondary containment berm, various fuel lines, the pump house, and septic tank. The highest soil and groundwater concentrations are centered at the former tank and generally decrease with distance from the tank. The True's Oil tank also appears to have supplied diesel fuel to the nearby 14,000-gallon diesel UST and tank car loading rack on the former Milwaukee Railyard to the east (Figure 2). Petroleum contamination and a free product plume were previously identified on the Milwaukee Railyard in the vicinity of this fueling area. Although this area was not a focus

of the Building 600 investigation, evidence of contamination associated with the former Milwaukee Railyard was identified at SB-13. Reports prepared for the former Milwaukee Railyard indicate free phase product remains at the site and remediation activities have ceased (Ecology 2011, Hart Crowser 2015). Testing indicated that NAPL at the former Milwaukee Railyard site has been depleted of water-soluble hazardous constituents (Shaw 2008).

Several "oil" and "oil and steam" notations are present on historical drawings in reference to pipelines. These notations suggest that heavier-end TPH, such as Bunker C fuel, were present. This would be consistent with locomotive fueling prior to the advent of the diesel locomotive. Other than the lube oil line, discussed below, TPH impacts discovered in the area appear consistent with diesel. As a result, it does not appear that these pipelines contributed to petroleum contamination of soil and groundwater.

The lube oil line leak noted in the late 1990s (GCI 2000) is also a known source of petroleum contamination. Soil impacted with TPH-ORO likely associated with this leak is located in a small area along the south side of Building 600 as identified on Figure 10.

The former waste oil tank and the existing diesel and gasoline USTs do not appear to be sources of petroleum contamination. During removal of the waste oil UST, it was noted that the tank was in good condition with minimal evidence of scaling, pitting, or rusting (CETI 1999). A contaminated soil sample from the tank excavation was tested and found to contain diesel. A sample of sludge from the waste oil tank contained primarily TPH-ORO, consistent with the anticipated contents. These analytical data indicate that soil contamination outside the tank is not consistent with the contents of the waste oil tank.

The existing diesel and gasoline fiberglass USTs are tested annually in accordance with the current regulations, most recently in May and June 2021. The tanks, lines, spill bucket, overfill prevention system, and leak detection system were all determined to be operating properly.

The shallow groundwater table is encountered from 8 to 12 feet bgs. Groundwater flow at the site appears to be toward the Puyallup River to the west/southwest and to the north towards East 11th Street. The dissolved groundwater plume appears to be primarily in the Upper Sand unit and has migrated in the direction of groundwater flow.

4.2 Exposure Assessment

This section identifies potential human and ecological exposures to contaminated media at the site. Consistent with WAC 173-340-350(1), exposure scenarios are identified that assist in the selection of a cleanup action that will "protect human health and the environment (including, as appropriate, aquatic and terrestrial ecological receptors)" (WAC 173-340-350(8)(c)(i)(A)). To evaluate cleanup actions, applicable cleanup standards must be determined. As outlined in WAC 173-340-700(5), to select the appropriate cleanup standards for cleanup actions, the following criteria must be evaluated:

- Nature of the contamination
- Potentially contaminated media

- Current and potential land and resource uses
- Current and potential receptors
- Current and potential pathways of exposure.

The nature of contamination and impacted media were described in Section 2.3. This section describes current and potential receptors and pathways of exposure, based on current and potential land and resource uses.

4.2.1 Current and Potential Land and Resource Uses

Cleanup levels must derive from reasonable maximum exposures, defined as the "highest exposure that is reasonably expected to occur at a site under current and potential future site use" (WAC 173-340-708(3)(b)). This section identifies the current and future potential uses of resources where contaminated media are known or suspected to be present. The resources under consideration are land, groundwater, and surface water.

4.2.2 Groundwater

Protection of drinking water is not applicable to this Site because the shallow groundwater is not potable. It is expected to remain non-potable in the future under the Model Toxics Control Act (MTCA) and local regulations because:

- Neither the Site nor groundwater in its vicinity is a current source of drinking water.
- Under Washington Administrative Code (WAC) 173-340-720(2)(b), neither the Site nor
 groundwater in its vicinity is a potential future source of drinking water because
 groundwater contains natural background levels of specific conductivity above the state
 and local secondary maximum contaminant level of 0.7 mS/cm (WAC 246-290-310(3)(a)
 and Tacoma-Pierce County Health Department Environmental Health Code Chapter 3
 Drinking Water).
- Site groundwater will not migrate into groundwater that is a current or potential source of drinking water.
- A domestic supply well would not be placed in the vicinity of Parcel 40 (WAC-173-340-720(2)(d)). State and local codes prohibit the construction of drinking water wells in the vicinity of the Parcel 40 via WAC 246-290-130(1) which requires drinking water supplies to come from the highest quality source (which at the Site is the municipal water supply system) and via WAC 290-135(2)(b) which specifies a minimum 100-foot drinking water well setback from surface water, roads, utilities, and buildings.

Protection of marine surface water is an applicable pathway because shallow groundwater at the Site flows toward and discharges into the brackish waters of the Puyallup River and the marine waters of Commencement Bay. The marine surface water quality pathway will incorporate criteria for both the protection of aquatic organisms and humans consuming aquatic organisms.

The groundwater to industrial indoor air pathway is relevant because the Parcel 40 is zoned Port Maritime Industrial by the City of Tacoma and is likely to remain industrial for the foreseeable

future. Additionally, the Site's current and future land uses include occupied industrial/commercial buildings. Vapor intrusion is discussed further in Section 4.2.4.

4.2.3 Soil

Parcel 40 is currently zoned Port Maritime Industrial and future land use plans are for industrial use, therefore, cleanup levels for industrial land use are applicable. Soil must also not leach to groundwater at concentrations that would cause groundwater to exceed acceptable levels. Parcel 40 is excluded from a terrestrial ecological evaluation per WAC 173-340-7491 (1)(b) since all contaminated soil is covered by buildings or pavement. Based on this exclusion, a simplified terrestrial ecological evaluation has not been performed but an institutional control will be required.

Soil direct contact risk is mitigated across much of the Parcel 40 area by complete asphalt or concrete coverage. Soil direct contact could still occur during subsurface excavations for utility work or construction. Existing paving is protective of industrial workers.

4.2.4 **Vapor**

Vapor intrusion risk is a concern where soil or groundwater is impacted with VOCs above SLs adjacent to enclosed breathing spaces. Benzene is present above SLs in the vicinity of Building 600. Based on the results of the indoor air assessment, it appears likely that petroleum hydrocarbons in soil and groundwater beneath the building are impacting indoor air through vapor intrusion (see Section 2.1). The Port has installed a sub-slab depressurization system (SSDS) to mitigate the potential vapor intrusion risk.

4.2.5 Potential Receptors and Exposure Pathways

The exposure pathways at the Site for human health or the environment are:

- Direct contact with soil by industrial maintenance, utility, or construction workers
- Soil leaching to groundwater
- Groundwater discharge to surface water and exposure to aquatic organisms and humans consuming aquatic organisms (through bioaccumulation)
- Inhalation of indoor air containing contaminants volatilized from groundwater and soil
 (VI) by onsite office workers and industrial maintenance workers.

Inhalation of indoor air containing contaminants is a relevant exposure pathway but one that was addressed by installation of the SSDS (CRETE 2021).

4.3 Cleanup Standards

MTCA provides the framework for evaluating and selecting cleanup actions. Within this framework are threshold requirements that must be met by all cleanup actions. The threshold requirements for cleanup actions, as defined in WAC 173-340-360(2)(a), are to:

- 1. Protect human health and the environment
- 2. Comply with cleanup standards (WAC 173-340-700 through 173-340-760)
- 3. Comply with applicable state and federal laws (WAC 173-340-710)
- 4. Provide for compliance monitoring (WAC 173-340-410 and 173-340-720 through 173-340-760)

This section develops appropriate cleanup standards to be protective of human health and the environment, and the locations at which to apply these cleanup standards (the points of compliance) (#1-2 above). The third requirement, comply with applicable or relevant and appropriate requirements (ARARs), is not discussed in this document, but would need to be evaluated during site cleanup and or development. The fourth requirement to provide for compliance monitoring, is discussed in Section 5.

4.3.1 Cleanup Levels

Cleanup levels for affected media at the Site were evaluated in accordance with MTCA and take into consideration exposure pathways and receptors based on current and likely future uses of the Site. Because the Site is located in a developed commercial/industrial setting with buildings, paved parking lots, and roads, the Site qualifies for a TEE exclusion under WAC 173-340-7491(1)(b).

The exposure scenarios that are relevant to the development of cleanup standards to protect human health and the environmental at Parcel 40 are:

- Direct contact with soil by industrial maintenance, utility, or construction workers
- Soil leaching to groundwater
- Groundwater discharge to surface water and exposure by aquatic organisms and humans consuming organisms
- Inhalation of indoor air containing contaminants volatilized from groundwater and soil
 (VI) by onsite office workers and industrial maintenance workers.

MTCA (WAC 173-340-360(c)(ii)(A)) states that groundwater sources shall be treated or removed, including removal of free product consisting of petroleum and other light nonaqueous phase liquid (LNAPL) from the groundwater using normally accepted engineering practices. MTCA defines free product as "a nonaqueous phase liquid that is present in the soil, bedrock, ground water or surface water as a distinct (sic) separate layer" (WAC 173-340-200). Free product has been measured in ITC-RW-1 and ITC-RW-2 and intermittently in GEI-MW-9. Sorbent socks were placed in wells ITC-RW-1, ITC-RW-2, and GEI-MW-9 on December 29, 2020 to remove accumulated free product.

4.4 Point of Compliance

A point of compliance is that point or location on a property where the CULs must be attained in each medium of concern. Preliminary points of compliance for the Site were established in accordance with WAC 173-340-740(6) for soil and WAC 173-340-720(8) for groundwater.

The point of compliance for soil cleanup levels based on direct contact is throughout the Property to 15 feet bgs. The point of compliance for soil cleanup levels based on protection of groundwater is throughout the property.

Shallow groundwater at Parcel 40 discharges either to the Puyallup River or Commencement Bay. For properties near, but not abutting, surface water, a conditional point of compliance may be "located as close as practicable to the source, not to exceed the point or points where ground water flows into the surface water" (WAC 173-340-720(8)(d)(ii)). For Parcel 40, groundwater compliance will be assessed at wells located within the property boundary or closer to the source.

5 Recommendations

Recommended cleanup and monitoring activities are:

- Install a sub-slab depressurization system at Building 600 to address any potential vapor intrusion. Installation occurred in the Summer and Fall of 2021. System startup is anticipated in February 2022.
- Install an additional groundwater monitoring well in the vicinity of SB-11 to fill dissolved plume data gap between GEI-MW-10 and GEI-MW-11.
- Routine groundwater monitoring sampling of the well network.

To the north of Building 600, TPH-DRO/ORO at SB-13, SB-14, and GEI-MW-8 may be attributable to former Milwaukee Railyard activities. Additional investigation may be warranted to better define boundary or overlap between the two petroleum releases sites.

6 References

- Anchor QEA 2019. Parcel 40 Groundwater Monitoring Report. Prepared by Anchor QEA, LLC, for Port of Tacoma. December 2019.
- Anchor QEA 2020. Parcel 40 Groundwater Monitoring UST Pad Investigation Report. Prepared by Anchor QEA, LLC, for Port of Tacoma. January 2020.
- AGI 1990. Environmental Assessment Former Milwaukee Railyard Tacoma, Washington. Prepared by Applied Geotechnology Inc. for Union Pacific Railroad. June 1990.
- CETI 1999. Underground Storage Tank Site Assessment/Site Characterization, Sea-Land Container Terminal. Prepared by Creative Environmental Technologies, Inc. and submitted to Tacoma Pierce County Health Department. February 19, 1999.
- CRETE 2020. Direct Push Soil, Groundwater and Tier II Vapor Intrusion Assessment Work Plan, Port of Tacoma's Parcel 40 Maintenance Building. Prepared by Crete Consulting Inc. for Port of Tacoma. June 10, 2020.
- CRETE 2021. Building 600 Subslab Depressurization System Basis of Design. Parcel 40, Port of Tacoma. Prepared by Crete Consulting Inc for Port of Tacoma. June 7, 2021.
- Ecology 1991. State of Washington Department of Ecology, Agreed Order No. DE 91-S218. July 31, 1991.
- Ecology 1995. State of Washington Department of Ecology Prospective Purchaser Consent Decree No. 95-2-02280-0, Milwaukee Railyard Site.
- Ecology 2011. Periodic Review, Union Pacific Railroad Former Milwaukee Railyard, Facility Site ID#: 1251. Toxics Cleanup Program. March 2011.
- Ecology 2018a. Guidance for Evaluation Soil Vapor Intrusion in Washington State: Investigation and Remedial Action. Washington State Department of Ecology, Toxics Cleanup Program. Publication No. 09-09-047. Revised April 2018.
- Ecology 2018b. Petroleum Vapor Intrusion (PVI): Updated Screening Levels, Cleanup Levels, and Assessing PVI Threats to Future Buildings. Washington State Department of Ecology, Toxics Cleanup Program. Implementation Memorandum No. 18. January 10, 2018.
- Ecology 2021. https://apps.ecology.wa.gov/gsp/Sitepage.aspx?csid=5002. Accessed on April 12, 2021.
- EMB 2020. Indoor and Ambient Air Sampling. Port of Tacoma Parcel 40 Maintenance Garage, Tacoma, Washington. Prepared by EMB Consulting LLC for Crete Consulting Inc. August 26, 2020.

- GCI 2000. *Phase 2 Environmental Site Assessment, Maersk Pacific Limited.* Prepared by Geotech Consultants, Inc. for Port of Tacoma. March 30, 2000.
- Geoengineers 2001. *Subsurface Exploration, Maersk Pacific Ltd. Site*, Prepared by Geoengineers for Port of Tacoma. April 3, 2001.
- Geoengineers 2002. *Focused Feasibility Study, Maersk Pacific Ltd. Site*, Prepared by Geoengineers for Port of Tacoma. December 6, 2002.
- Hart Crowser 1974. Geology of the Port of Tacoma. Hart-Crowser and Associates
- Hart Crowser 1983. Subsurface Exploration and Geotechnical Engineering Study, Marine Yard and CFS Area, Port of Tacoma, Washington. Prepared for the Port of Tacoma and Tacoma Terminals, Inc. November 4.
- Hart Crowser 2015. Groundwater Monitoring Report, Former Milwaukee Railyard, Port of Tacoma, Washington. Prepared for Port of Tacoma. January 5, 2015.
- McGranahan et al. 1984. Tacoma Terminals, Inc., Port of Tacoma Phase II. March 1984.
- Metsker's 1926. *Metsker's Atlas, Tacoma-Washington, W.2 of Sec.34, T.21N, R.3E.W.M.*Compiled by Chas F. Metsker, 1926.
- Port of Tacoma 1983. Tacoma Terminals, Inc. C.F.S. Area Earthwork Plan. Drawing No. 3865-23-C3, sheet 5 of 9 and Drawing EP-3863-23, dated December 29.
- Port of Tacoma 2000. *Discovery of Hydrocarbon Release, Maersk Pacific Limited Site*. Letter from Suzanne Dudziak (Port of Tacoma) to Dave Smith (Washington State Department of Ecology. April 10, 2000.
- Shaw 2003. *Maersk Product Recovery Update,* Memorandum from Brian Peters (Shaw Environmental, Inc.) to Suzanne Dudziak (Port of Tacoma), December 17, 2003.
- Shaw 2008. Report of Additional Investigation, Port of Tacoma, Former Milwaukee Railyard, Tacoma, Washington. September, 2008
- tacomaMAP 2021. https://tmap.cityoftacoma.org/ tacomaMAP v2021.1.1, January 21, 2021. Accessed on April 19, 2021.

Tables

Table 1 Summary of Indoor Air, Ambient Air, and Sub-Slab Vapor Sample Results Port of Tacoma - Parcel 40

								Sample Location Sample ID Sample Duration						
	MTCA			Ambient West	Ambient East	Indoor - West Bay 13	Indoor - Parts Office	Indoor - NW Office	Indoor - East	Indoor - East (duplicate)	Subslab Vapor Parts Room	Subslab Vapor East Bay	MTCA Sub-	
	Screening Level (indoor air) Method C	ir) (8hr TWA) ^a		<u>AW040720</u> 09:54 to 09:54 7/4 - 7/5/2020		IWB13040720 10:13 to 10:13 7/4 - 7/5/2020	IPO040720 10:23 to 10:23 7/4 - 7/5/2020	INWOFF040720 10:31 to 10:31 7/4 - 7/5/2020	<u>IE040720</u> 10:37 to 10:37 7/4 - 7/5/2020	IE100040720 10:37 to 10:38 7/4 - 7/5/2020	<u>SSV-Parts</u> 16:48 to 16:53 10/27/2020	SSV-E Bay 17:17 to 17:22 10/27/2020	Slab Soil Gas Screening level Method B	
Analytes		all values in units of μg/m ³												
					Analysis for Vol	atile Compounds E	By EPA Method	TO-15						
Benzene	3.20	,	NV	<0.32	<0.38									
Toluene	5000	376,810	NV	<19	<23	39								
Ethylbenzene	1000	434,190	NV	<0.43	<0.52	14	6.3				<1.4	<3.6	-,	
m,p-Xylene	100		NV	<0.87	<1	63							,	
o-Xylene	100	434,190	NV	<0.43	<0.52	19					<1.4		,	
Naphthalene	0.74	,	NV	0.16	0.12	0.39	0.36	0.34	0.32	0.36	<0.84	<2.1	2.5	
Analysis For Volatile Comp							•		T	T				
APH EC5-8 aliphatics	NV	NV		<30	<36	240	160	110	130	130	<130	1,900	NV	
ACGIH C5-8 aliphatics	NV	NV	1,500,000						_					
APH EC9-12 aliphatics	NV	NV		<35	<42	1,500°	1,200 ^c	1,100 ^c	2,600 ^c	2,700 ^c	230	<410	NV	
ACGIH C9-15 aliphatics	NV	NV	1,200,000											
APH EC9-10 aromatics	NV	NV		<25	<30	<25	<30	<25	<25	<25	<80	<200	NV	
ACGIH C9-15 aromatics	NV	NV	1,200,000											
TPH ^d	310			111	130	1,901	1,460	1,293	2,784	2,883	507	2,679	4,700	

NV = No Value

MTCA = Model Toxics Control Act

DOSH = Washington State Division of Occupational Safety and Health

PEL = Permissible Exposure Limit

EPA = Environmental Protection Agency

APH = Air-Phase Petroleum Hydrocarbons

8hr TWA = 8 hour Time-Weighted Average

ACGIH = American Conference of Governmental Industrial Hygienists

GGVs - Group Guidance Values

 $\mu g/m^3 = micrograms per cubic meter$

TPH = Total Petroleum Hydrocarbons

MA-APH = Massachusetts Department of Environmental Protection Method for the Determination of Air-Phase Petroleum Hydrocarbons

^a DOSH PELs are cited in units of parts per million for the analytes listed. The PELs have been converted to units of µg/m³ for the purpose of this report.

^b The GGVs listed in Table 1 are reproduced from Column B of the ACGIH Table 1 Group Guidance Values found in Appendix H of the ACGIH publication, 2019 Threshold Limit Values and Biological Exposure Indices.

^c The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

^d TPH is based on Petroleum Vapor Intrusion (PVI): Updated Screening Levels, Cleanup Levels, and Assessing PVI Threats to Future Buildings Implementation Memorandum No. 18, dated January 10, 2018. The indoor air TPH screening level assumes compounds not detected are present at the full reporting limit. The sub-slab screening level is based on the Method B indoor air screening level of 140 ug/m3 and the standard attenuation factor of 0.03.

Table 2 Monitoring Well Groundwater Analytical Results - March 2020 Port of Tacoma - Parcel 40

	MTCA				Duplicate				
	Groundwater	Marine Surface		GEI-MW1	GEI-MW-1 (GEI-				ITC-RW1-0320
Parameter	Screening Level	Water Screening	Source of Marine	(See Note 5)	MW39-0320)	GEI-MW5	GEI-MW8	GEI-MW9	(See Note 4)
	Method C	Level	Surface Water	03-26-20	03-26-20	03-26-20	03-26-20	03-26-20	03-26-20
	ug/L	ug/L	Screening Level	ug/L	ug/L	ug/L	ug/L	ug/L	mg/kg
		Vola	tile Organic Constitu	uents (VOCs; EPA	Method 8260)				
1,2,4-Trimethylbenzene	180	NV		3.1	3.1	1.0 U	1.0 U	1.0 U	10 U
1,2-Dichlorobenzene	1,600	800	See Note 1	1.2	1.3	1.0 U	1.0 U	1.0 U	10 U
1,3-Dichlorobenzene	NV	2	See Note 1	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	21
1,4-Dichlorobenzene	81	22	See Note 2	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	19
Benzene	8	1.6	See Note 3	28/35.7	28	0.35 U	0.35 U	0.35 U/20 U	6 U
Chlorobenzene	350	200	See Note 1	4.1	4.2	1.0 U	1.0 U	2.6	14
Ethylbenzene	1,800	31	See Note 1	5.6/20 U	5.5	1.0 U	1.0 U	1.0 U	10 U
Isopropylbenzene (Cumene)	NV	NV		2.9	2.8	1.0 U	1.0 U	1.8	10 U
Naphthalene	350	4,900	See Note 2	1.2/20 U	1.1	1.0 U	1.0 U	1.0 U	10 U
n-Propylbenzene	NV	NV		2.9	2.9	1.0 U	1.0 U	1.5	10
o-Xylene	3,500	NV		5.4/20 U	5.2	1.0 U	1.0 U	1.0 U	10 U
p-Isopropyltoluene	NV	NV		1.6	1.5	1.0 U	1.0 U	1.0 U	49
sec-Butylbenzene	NV	NV		1.0 U	1.0 U	1.0 U	1.0 U	2.2	16
Toluene	1,400	130	See Note 1	2.8/20 U	2.9	1.0 U	1.0 U	1.0 U	10 U
			Fue	l Additives					
1,2-dibromoethane (EDB)	2.7	NV		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U
1,2-dichloroethane (EDC)	42	NV		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U
Methyl tert-butyl ether (MTBE)	240	NV		1.0 U/20 U	1.0 U	1.0 U	1.0 U	1.0 U/20 U	10 U
			Volatile Petrole	um Hydrocarbon	s (VPH)				
Aliphatic Hydrocarbon (C5-C6)	NV	NV		40 U	NA	NA	NA	40 U	NA
Aliphatic Hydrocarbon (C6-C8)	NV	NV		87.9	NA	NA	NA	20 U	NA
Aliphatic Hydrocarbon (C8-C10)	NV	NV		37.2	NA	NA	NA	29.3	NA
Aliphatic Hydrocarbon(C10-C12)	NV	NV		231	NA	NA	NA	172	NA
Aromatic Hydrocarbon (C8-C10)	NV	NV		138	NA	NA	NA	50 U	NA
Aromatic Hydrocarbon (C10-C12)	NV	NV		505	NA	NA	NA	343	NA
Aromatic Hydrocarbon (C12-C13)	NV	NV		896	NA	NA	NA	461	NA

Yellow = Shading denotes values above ONE MTCA Screening level

Orange = Shading denotes values above BOTH MTCA Screening levels

Bold = detections

ug/L = micrograms per liter

mg/kg = milligram per kilogram

U = laboratory reporting limit

NV = no value

NA = not analyzed

Note 1 - MTCA Surface Water Human Health Marine Waters 40 CFR 131.45 Screening Level

Note 2 - MTCA Surface Water Method B Cancer Screening Level

Note 3 - MTCA Surface Water Human Health Marine Waters 173-201A WAC Screening Level

Note 4 - ITC-RW1 had 0.89-ft thickness of free product on sample date of 3/26/2020.

Note 5 - Split samples to two labs (Friedman & Bruya value/Fremont Analytical value)

Table 3 Soil Analytical Results - 2020 Port of Tacoma - Parcel 40

				Parameter									
Sample ID	Date Sampled	Sample Depth (ft bgs)	Units	Diesel Range Organics (DRO)	Lube Range Oil (ORO)	DRO/ORO (Diesel + Lube Oil)	Gasoline Range Organics (GRO)	Benzene	Toluene	Ethyl- benzene	Total Xylenes		
	Sc	reening Level	mg/kg	see total	see total	2,000	30	0.03	7	6	9		
SB-01-09	6/12/20	9 to 10	mg/kg	23,000	1600 x	23,000	3,000	0.2 U	0.2 U	7	24		
SB-02-09.5	6/12/20	9.5 to 10	mg/kg	3,800	390 x	3,800	600	0.2 U	0.2 U	1.6	2.3		
SB-03-10	6/12/20	10 to 11	mg/kg	27,000	3100 x	27,000	2,400	14	3.8	20	20		
Dup (SB-03-10)	6/12/20	10 to 11	mg/kg	40,000	4,700	44,700	2,000	1.3	5	13	17		
SB-04-08	6/12/20	8 to 9	mg/kg	15,000	1100 x	15,000	2,800	0.2 U	0.2 U	7.9	20		
SB-05-09.5	6/12/20	9.5 to 10	mg/kg	9,500	750 x	9,500	600	0.1 U	0.1 U	1.7	2.1		
SB-06-09	6/12/20	9 to 10	mg/kg	15,000	490 x	15,000	NA	NA	NA	NA	NA		
SB-07-07.5	6/12/20	7.5 to 8.5	mg/kg	50 U	250 U	250 U	NA	NA	NA	NA	NA		
SB-08-09	6/12/20	9 to 10	mg/kg	50 U	250 U	250 U	NA	NA	NA	NA	NA		
SB-09-07.5	6/12/20	7.5 to 10	mg/kg	18,000	610	18,610	NA	NA	NA	NA	NA		
SB-10-05	8/5/20	5 to 6	mg/kg	50 U	250 U	250 U	5 U	0.02 U	0.02 U	0.02 U	0.06 U		
SB-11-09	8/5/20	9 to 10	mg/kg	8,000	550 x	8,000	1,500	0.02 Uj	0.1 U	3.3	2.6		
Dup (SB-11-09)	8/5/20	9 to 10	mg/kg	9,400	640 x	9,400	1,500	0.02 Uj	0.1 U	2.9	2.3		
SB-12-10	8/5/20	10 to 11	mg/kg	150	250 U	150	36	0.02 U	0.02 U	0.02 U	0.06 U		
SB-13-09	8/5/20	9 to 10	mg/kg	12,000	860 x	12,000	1,400	0.02 Uj	0.1 U	2.0	1.7		
SB-14-09	8/5/20	9 to 10	mg/kg	50 U	250 U	250 U	5 U	0.02 U	0.02 U	0.02 U	0.06 U		
SB-15-08	8/5/20	8 to 8.5	mg/kg	50 U	250 U	250 U	5 U	0.02 U	0.02 U	0.02 U	0.06 U		
SB-16-05	8/5/20	5 to 6	mg/kg	50 U	250 U	250 U	5 U	0.02 U	0.02 U	0.02 U	0.06 U		
MW-11-10-11.5	10/4/20	10 to 11.5	mg/kg	50 U	250 U	250 U	5 U	0.02 U	0.02 U	0.02 U	0.06 U		

Yellow = Shading denotes values above the MTCA Screening level

MTCA Method A industrial/protection of groundwater vadose (default)

Bold = detections

mg/kg = milligram per kilogram

U = laboratory reporting limit

NV = no value

NA = not analyzed

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation

Table 4 Direct Push Groundwater Analytical Results - 2020 Port of Tacoma - Parcel 40

				Parameter										
Sample ID	Date Sampled	Units	Diesel Range Organics (DRO)	Lube Range Oil (ORO)	DRO/ORO (Diesel + Lube Oil)	DRO - SGC	ORO - SGC	DRO/ORO - SGC (Diesel + Lube Oil)	Gasoline Range Organics (GRO)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	
MTCA Method A/C Industrial	l Groundwater													
S	creening Level	ug/L	see total	see total	500	see total	see total	500	800	8	1,400	1,800	3,500	
MTCA Method B Marine	Surface Water													
S	creening Level	ug/L	NV	NV	NV	NV	NV	NV	NV	1.6	130	31	NV	
SB-01-0620	6/12/20	ug/L	690,000	25000 U	690,000	620,000	25000 U	620,000	4,100	22	10 U	25	30 U	
SB-01D-0620	6/12/20	ug/L	880	250 U	880	470	250 U	470	100 U	1 U	1 U	1 U	3 U	
SB-02-0620	6/12/20	ug/L	78,000	25000 U	78,000	77,000	25000 U	77,000	1,800	1 U	1 U	1	4.2	
Dup (SB-02)	6/12/20	ug/L	94,000	25000 U	94,000	97,000	25000 U	97,000	830	1 U	1.1	1 U	4.0	
SB-03-0620	6/12/20	ug/L	1,700,000	64,000 x	1,700,000	1,700,000	72,000 x	1,700,000	4,100	1 U	10	27	3 U	
SB-04-0620	6/12/20	ug/L	25,000	3,100 x	25,000	12,000	2500 U	12,000	1,600	81	4.6	19	14	
SB-05-0620 (see note1)	6/12/20	ug/L	62,000,000	1,500,000 x	62,000,000	71,000,000	2,000,000 x	71,000,000	7,500	1.1	3.4	1 U	38	
SB-06-0620	6/12/20	ug/L	18,000	2500 U	18,000	15,000	2500 U	15,000	750	1 U	1 U	1.5	3 U	
SB-07-0620	6/12/20	ug/L	1,100	250 U	1,100	550	250 U	550	100 U	1 U	1 U	1 U	3 U	
SB-08-0620	6/12/20	ug/L	280	330	610	55 x	290	290	100 U	1 U	1 U	1 U	3 U	
SB-08D-0620	6/12/20	ug/L	640	250 U	640	310	250 U	310	100 U	1 U	1 U	1 U	3 U	
SB-09-0620	6/12/20	ug/L	54,000	2500 U	54,000	61,000	2500 U	61,000	3,500	3.2	1 U	11	9.3	
SB-10-0820	8/5/20	ug/L	50 U	250 U	250 U	50 U	250 U	250 U	100 U	1 U	1 U	1 U	3 U	
SB-10D-0820	8/6/20	ug/L	400 x	250 U	400 x	50 U	250 U	250 U	100 U	1 U	1 U	1 U	3 U	
SB-11-0820	8/5/20	ug/L	7,200	250 U	7,200	5,900	250 U	5,900	430	1 U	1 U	1 U	3 U	
SB-12-0820	8/5/20	ug/L	3,600	1,300	4,900	2,600	1300	3,900	100 U	1 U	1 U	1 U	3 U	
SB-12D-0820	8/6/20	ug/L	1700 x	380 x	2,080	50 U	250 U	250 U	100 U	1 U	1 U	1 U	3 U	
SB-13-0820	8/5/20	ug/L	12,000	1,400 x	12,000	9,000	960 x	9,000	280	1 U	1 U	1 U	3 U	
Dup (SB-13)	8/6/20	ug/L	16,000	1,900 x	16,000	12,000	1400 x	12,000	320	1 U	1 U	1 U	3 U	
SB-14-0820	8/5/20	ug/L	150,000	6200 x	150,000	130,000	5,600 x	130,000	1,200	1 U	1 U	3.0	3 U	
SB-15-0820	8/5/20	ug/L	2,900	410 x	2,900	2,900	330 x	2,900	100 U	1 U	1 U	1 U	3 U	
SB-16-0820	8/5/20	ug/L	50 U	250 U	250 U	50 U	250 U	250 U	100 U	1 U	1 U	1 U	3 U	

MTCA Screening Level Method A for TPH and Method C for BTEX

Yellow = Shading denotes values above surface water MTCA screening level

Orange = Shading denotes values above groundwater MTCA screening levels

Bold = detections

ug/L = micrograms per liter

U = laboratory reporting limit

NV = no value

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Note 1 - Sample SB-05-0620 is likely influenced by the presence of free phase hydrocarbons present. Field notes for this groundwater sample indicate moderate to strong hydrocarbon odor, hydrocarbon sheen and "yellowish, oily water" on purged sample water.

Table 5 Monitoring Well Groundwater Analytical Results - November 2020 Port of Tacoma - Parcel 40

								Parameter										
Monitoring Well ID	Date Sampled	Units	Diesel Range Organics (DRO)	Lube Range Oil (ORO)	DRO/ORO (Diesel + Lube Oil)	DRO - SGC	ORO - SGC	DRO/ORO - SGC (Diesel + Lube Oil)	Gasoline Range Organics (GRO)	Benzene	Toluene	Ethyl- benzene	Total Xylenes					
MTCA Method A/C Indi	ustrial Groundwater																	
	Screening Level	ug/L	see total	see total	500	see total	see total	500	800	8	1,400	1,800	3,500					
MTCA Method B M	arine Surface Water																	
	Screening Level	ug/L	NV	NV	NV	NV	NV	NV	NV	1.6	130	31	NV					
				,														
GEI-MW-1	11/19/20	ug/L	25,000	5600	30,600	8,500	320 x	8,500	1700	46	6.7	22	14					
GEI-MW-2	11/20/20	ug/L	1500 x	330 x	1,830	50 U	250 U	250 U	360	1 U	1 U	1 U	3 U					
GEI-MW-3	11/19/20	ug/L	430 x	540 x	970	50 U	250 U	250 U	100 U	1 U	1 U	1 U	3 U					
GEI-MW-4	11/20/20	ug/L	370 x	250 U	370	50 U	250 U	250 U	100 U	1 U	1 U	1 U	3 U					
GEI-MW-5	11/19/20	ug/L	370 x	250 U	370	50 U	250 U	250 U	100 U	1 U	1 U	1 U	3 U					
GEI-MW-6	11/19/20	ug/L	270 x	440 x	710	50 U	250 U	250 U	100 U	1 U	1 U	1 U	3 U					
GEI-MW-8	11/19/20	ug/L	2400 x	820 x	3,220	550	250 U	550	130	1 U	1 U	1 U	3 U					
GEI-MW-9	11/20/20	ug/L	2,900	250 U	2,900	920	250 U	920	360	1 U	1 U	1 U	3 U					
MW-10	11/19/20	ug/L	720 x	430 x	1,150	50 U	250 U	250 U	100 U	1 U	1 U	1 U	3 U					
DUP-1120																		
(MW-10)	11/19/20	ug/L	730 x	400 x	1,130	50 U	250 U	250 U	100 U	1 U	1 U	1 U	3 U					
MW-11	11/19/20	ug/L	150x	250 U	150	50 U	250 U	250 U	100 U	1 U	1 U	1 U	3 U					

MTCA Screening Level Method A for TPH and Method C for BTEX Yellow = Shading denotes values above ONE MTCA Screening level

Orange = Shading denotes values above BOTH MTCA Screening levels

Bold = detections

ug/L = micrograms per liter

U = laboratory reporting limit

NV = no value

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation

Table 6 Monitoring Well Construction and Field Parameters - November 2020 Port of Tacoma - Parcel 40

Well ID	Date	Initial Depth to Water (feet BTOC)	Final Depth to Water (feet BTOC)	Depth to LNAPL (feet BTOC)	Measured Total Depth (feet BTOC)	Well Screen Interval (feet bgs)	Temperature (degrees C)	Specific Conductance (uS/cm)	Oxidation- Reduction Potential (mV)	Dissolved Oxygen (mg/L)	рН (S.U.)	Turbidity ^a (NTU)	Total Dissolved Solids (mg/L)	Sampling Purge Rate (mL/min)
GEI-MW-1	11/19/2020	10.00	11.21	NP	15.28	4-14	13.6	2,697	-86.8	0.21	6.62	407 Clear	1753	<=150
GEI-MW-2	11/20/2020	9.10	9.53	NP	14.90	5-15	16.8	905	-95.1	0.25	7.65	307 Clear	588	<=200
GEI-MW-3	11/18/2020	8.61	NM	NP	8.66	4-14	15.0	2630	-121.8	0.19	7.00	522 Clear	1704	>=200
GEI-MW-4	11/20/2020	9.75	10.49	NP	15.08	4-14	14.3	2225	-114.9	0.26	7.37	617 Clear	1446	<=175
GEI-MW-5	11/19/2020	9.60	14.79	NP	9.81	4-14	15.7	2458	-78.2	0.25	6.91	596 Clear	1594	150
GEI-MW-6	11/19/2020	9.26	9.44	NP	15.40	6-16	15.2	1924	-80.4	0.18	6.72	638 Clear	1252	<=175
GEI-MW-8	11/19/2020	8.85	8.90	NP	15.05	5-15	16.0	1473	-84.6	0.09	6.65	547 Clear	962	<=250
GEI-MW-9	11/20/2020	10.44	10.73	NP	15.42	4-14	17.9	1,263	-100.0	0.23	7.36	198 Clear	820	<=175
MW-10	11/19/2020	10.58	10.66	NP	NM	7-17	16.1	2,583	-134.8	0.20	7.15	793 Clear	1678	175
MW-11	11/18/2020	10.28	11.15	NP	NM	5-15	14.7	2,235	210.0	0.31	6.51	228 Clear	1454	100
ITC-RW-1 ^b	10/25/2020	10.47	NM	9.65	NM	5-15	NM	NM	NM	NM	NM	NM	NM	NM
ITC-RW-2 ^b	10/25/2020	12.14	NM	9.85	NM	5-15	NM	NM	NM	NM	NM	NM	NM	NM

Notes:

a. Turbidity measurements through flow cell and water quality meter do not appear accurate and qualitative description provided.

b. Well not gauged during November 2020. Gauging data from 10/25/2020.

NM - Not measured

NP - Not present

BTOC - Below top of casing (designated measuring point/mark or north side of casing)

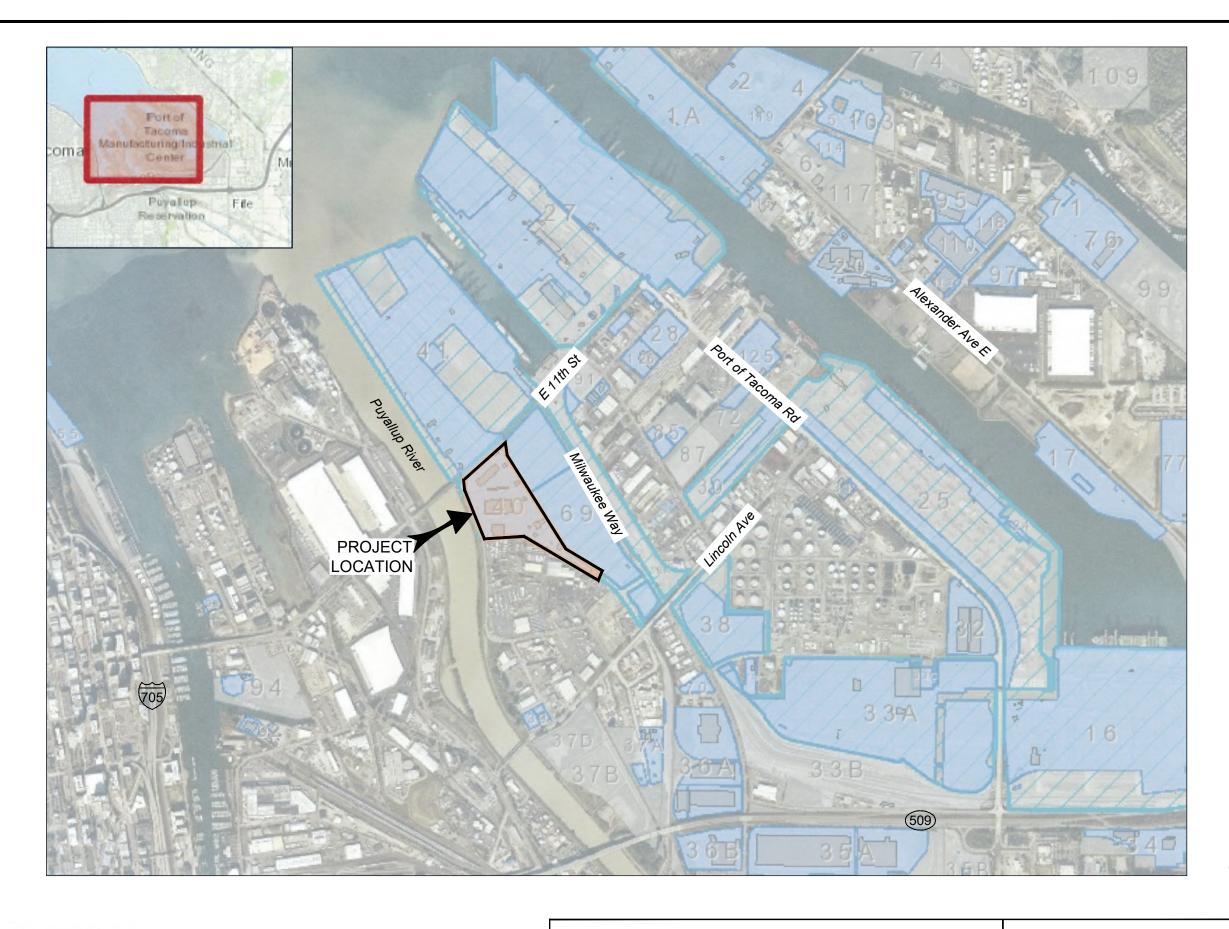
bgs - below ground surface

C - Celsius

uS/cm - micro-Siemens per centimeter

mg/L - milligrams per Liter

S.U. - Standard Units

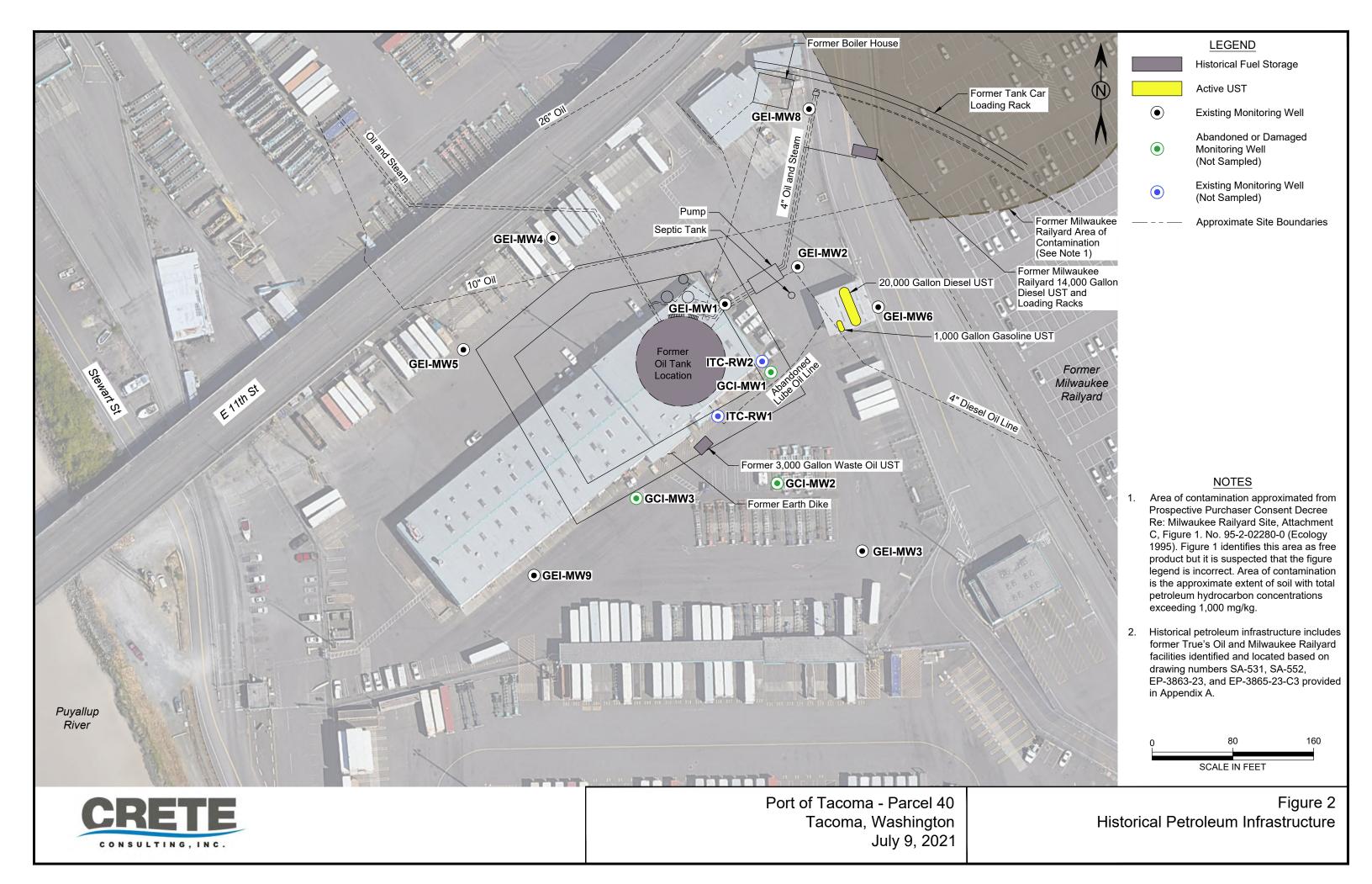

mV - millivolts

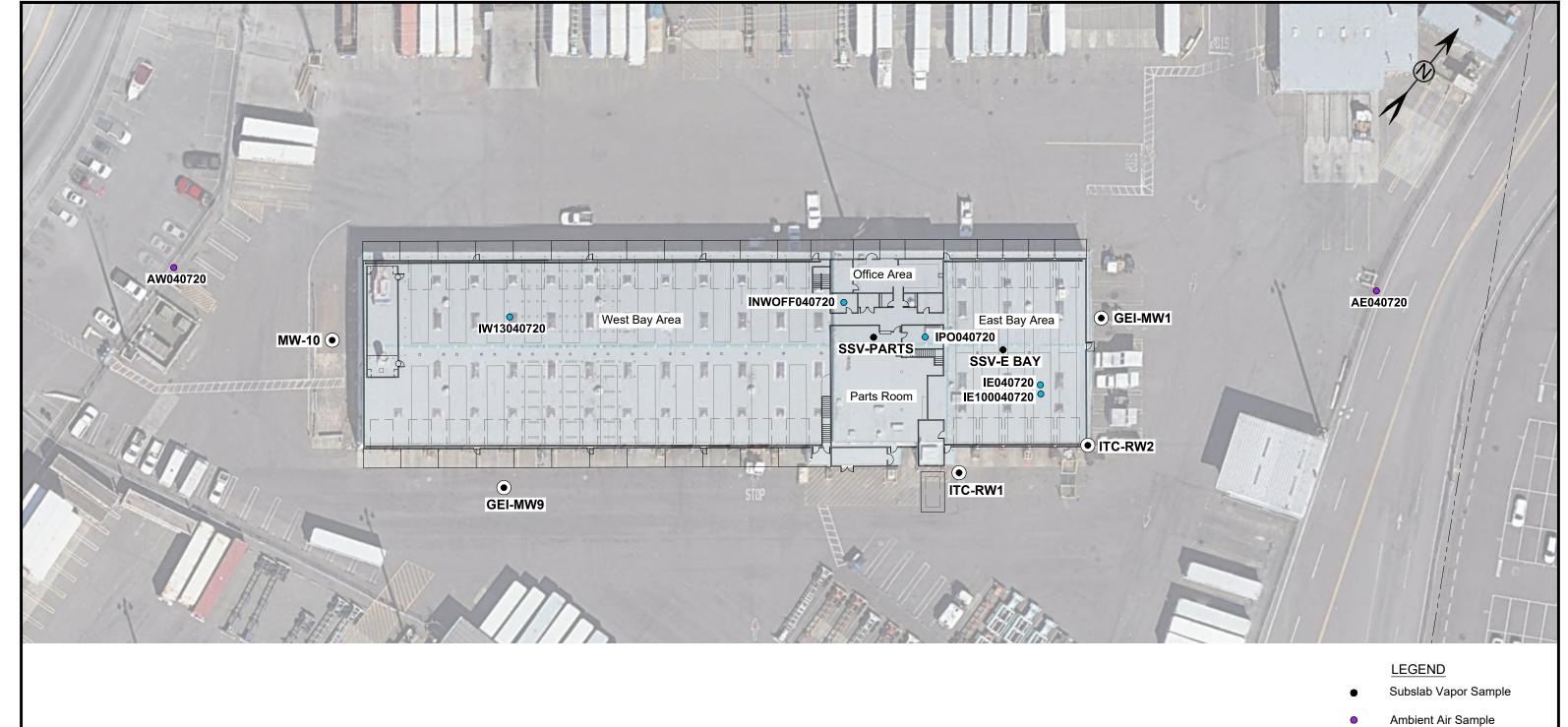
NTU - Nephelometric Turbidity Units

mL/min - milliliters per minute

All water quality parameters are final instrument readings after low-flow sampling stabilization and immediately prior to sampling.

Figures

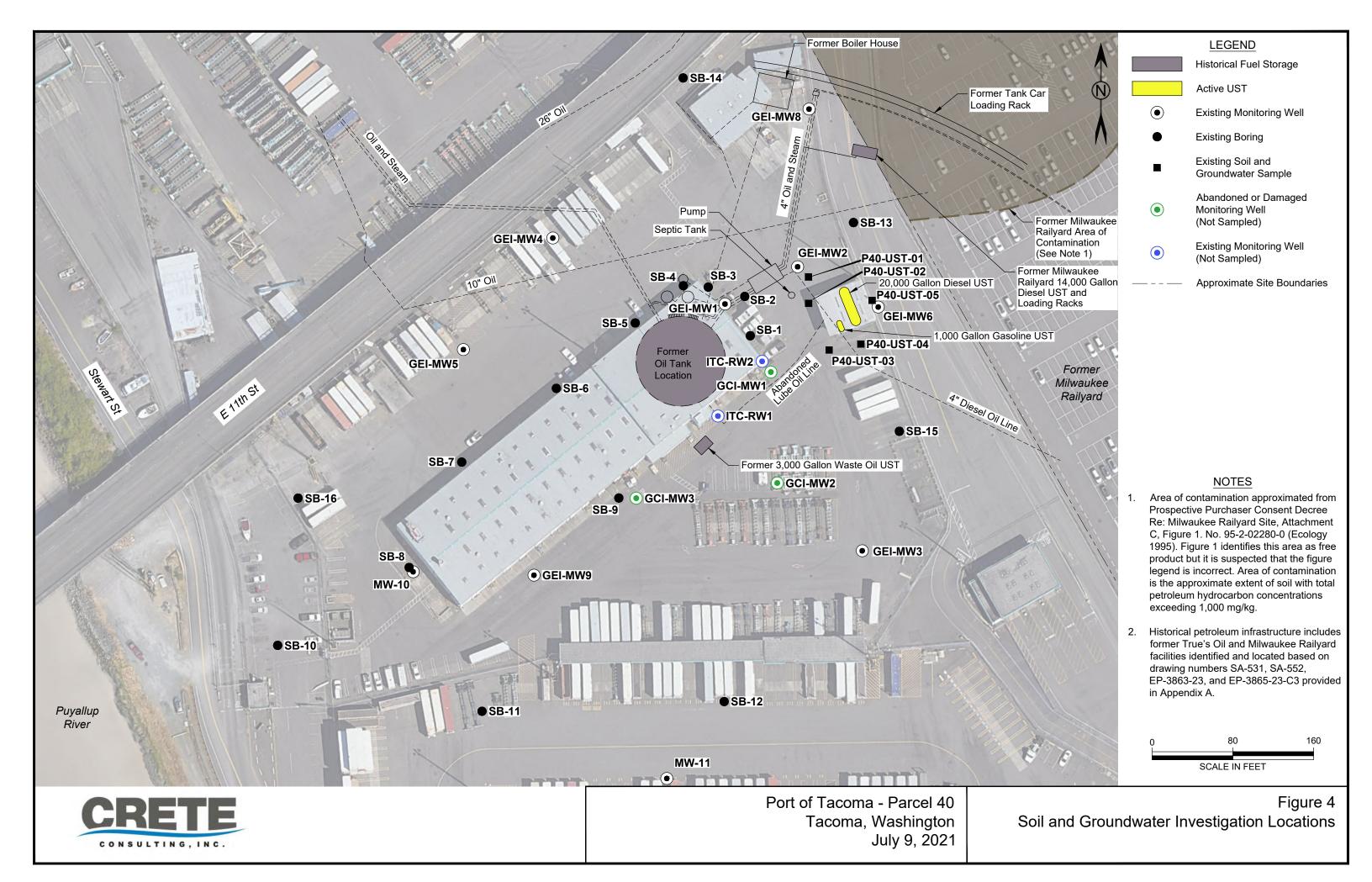


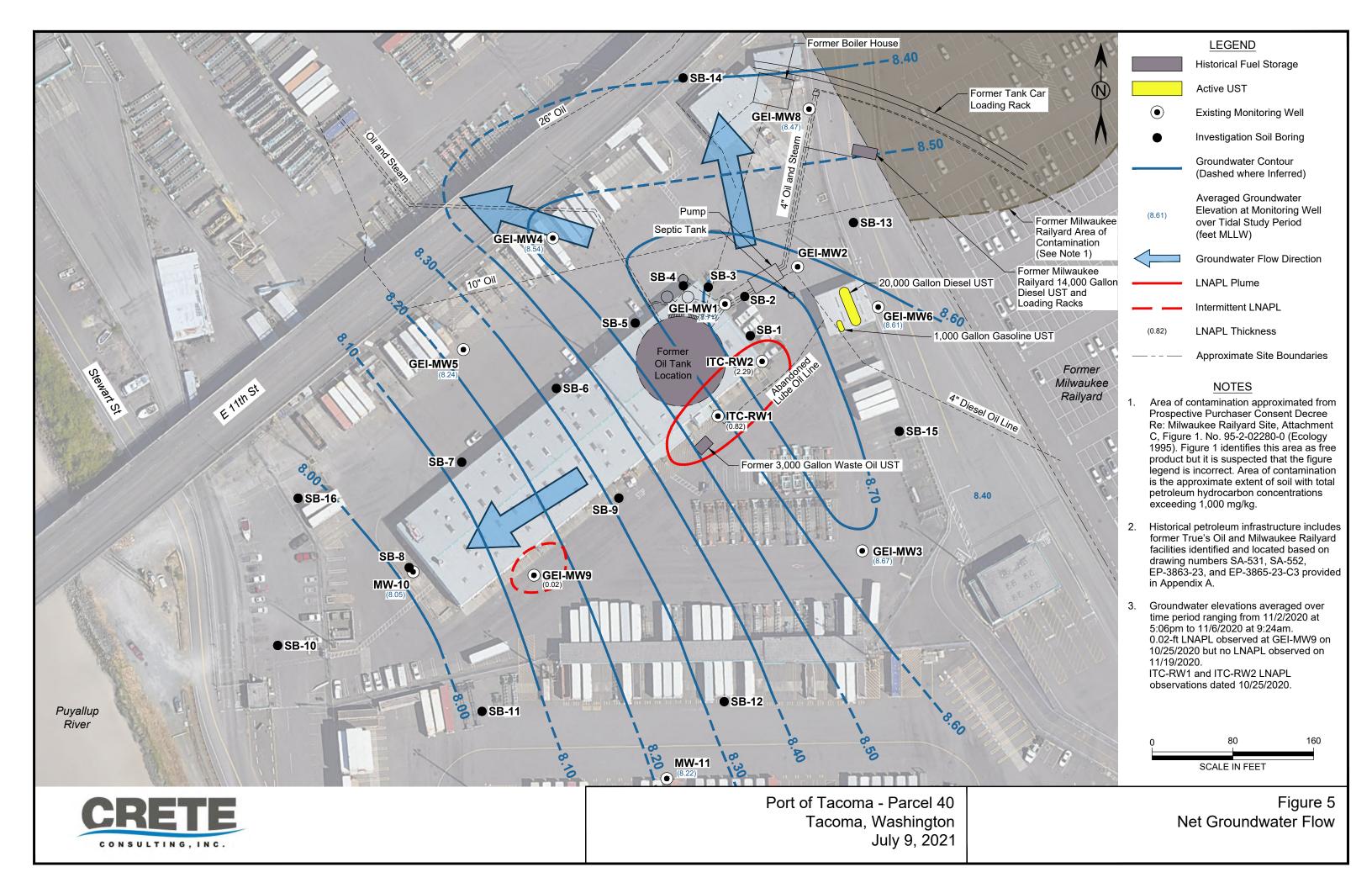


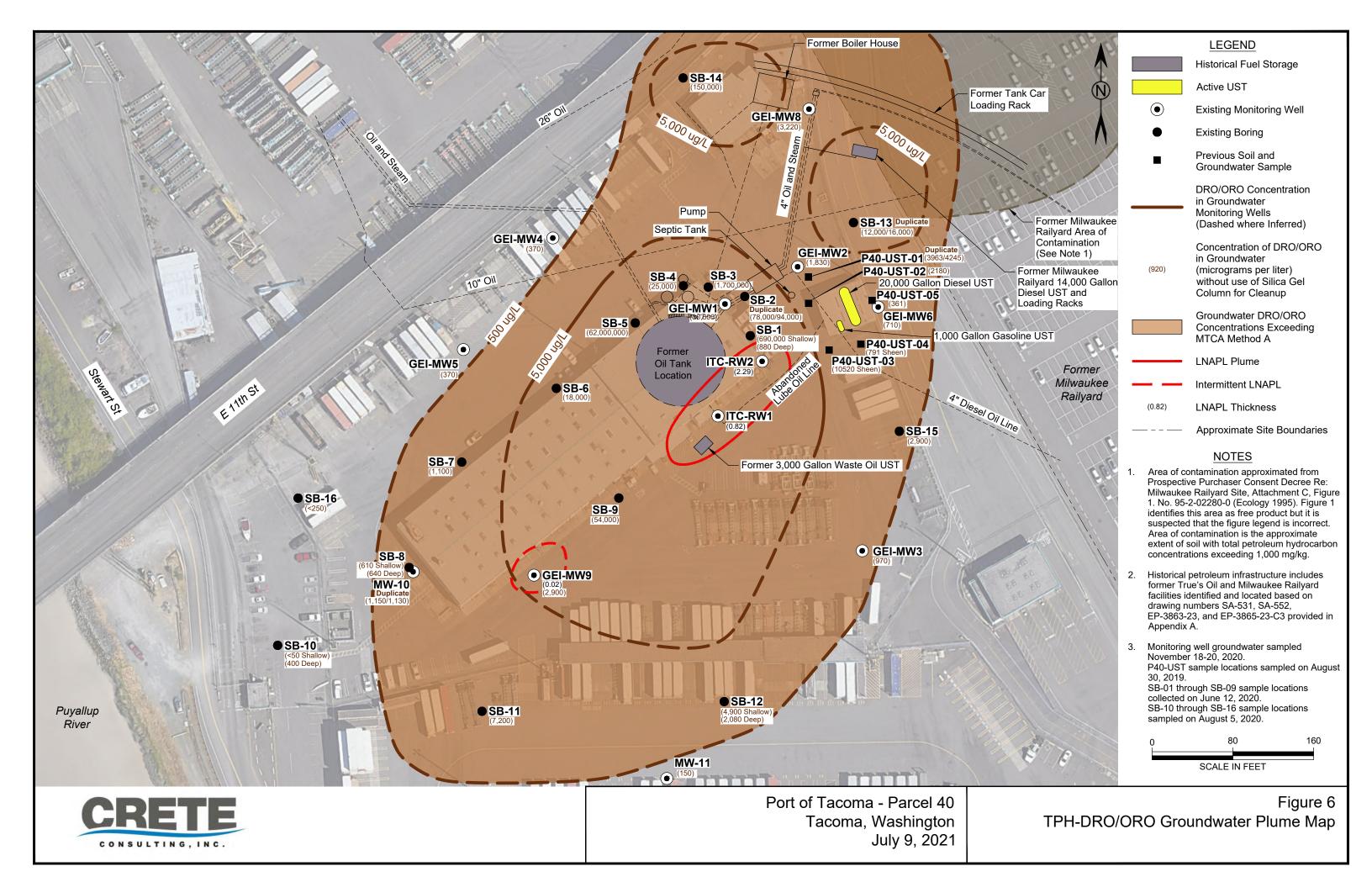
0 2,500 5,000 SCALE IN FEET

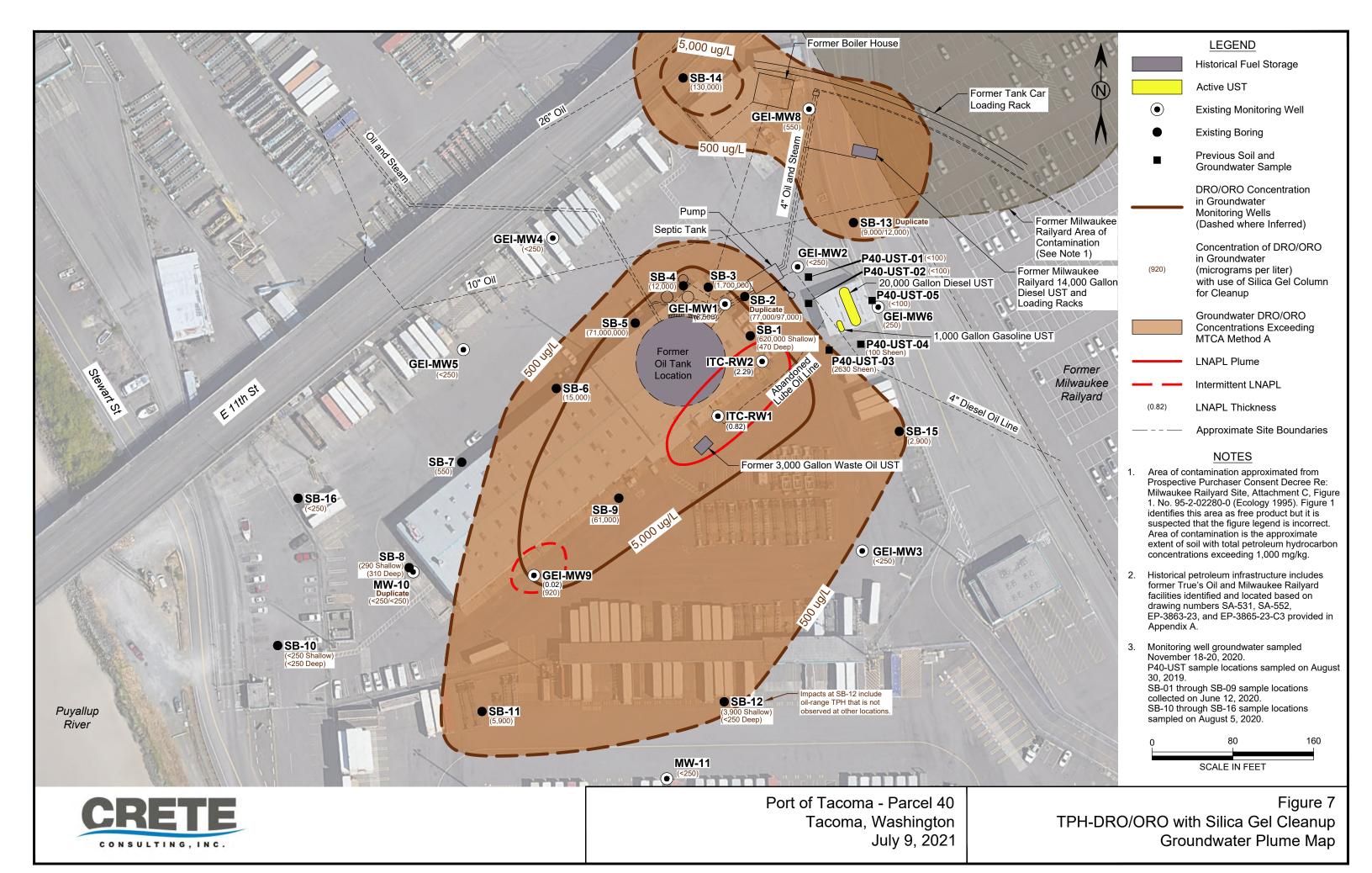


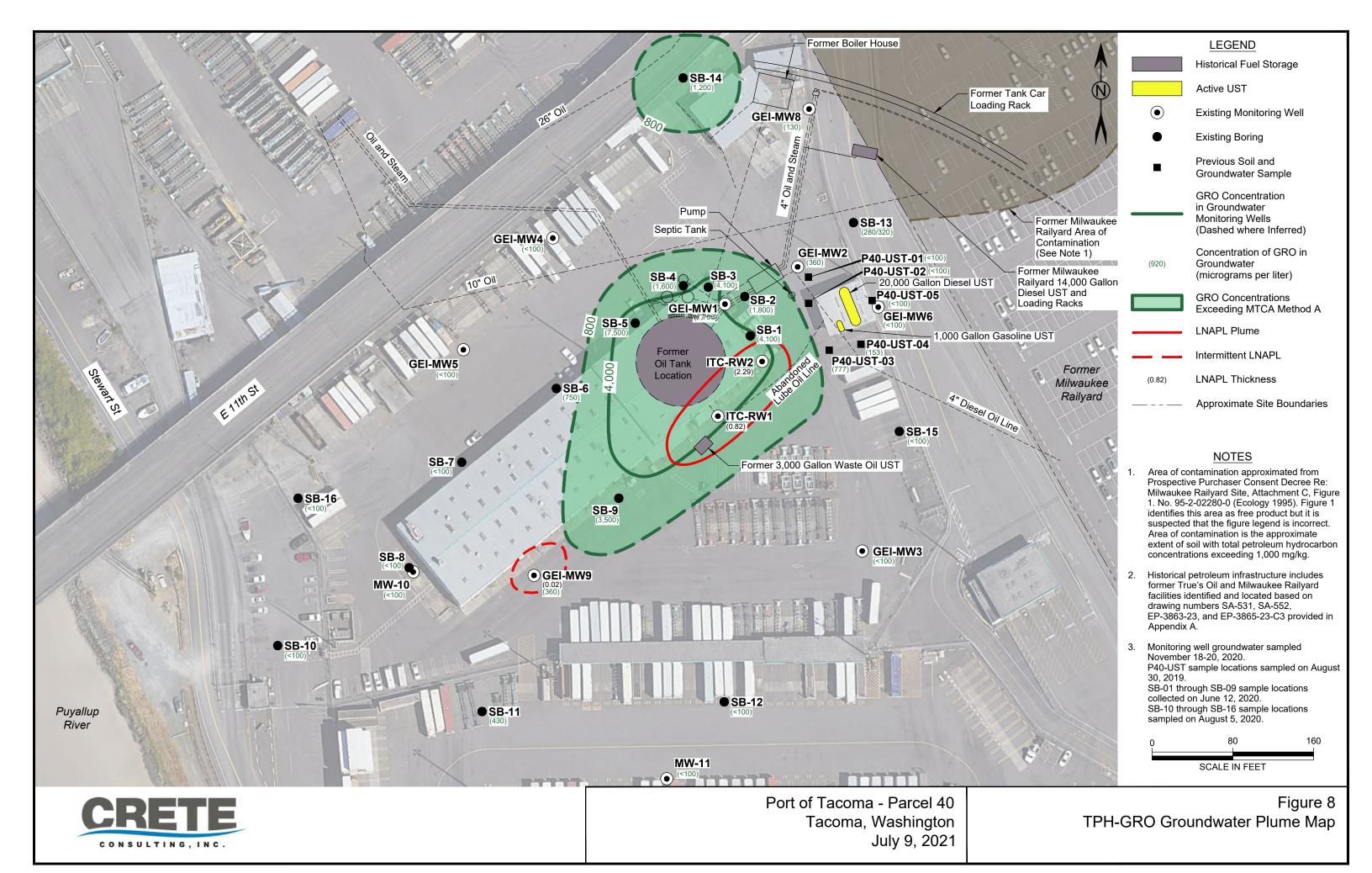
Port of Tacoma - Parcel 40 Tacoma, Washington July 9, 2021 Figure 1 Vicinity Map

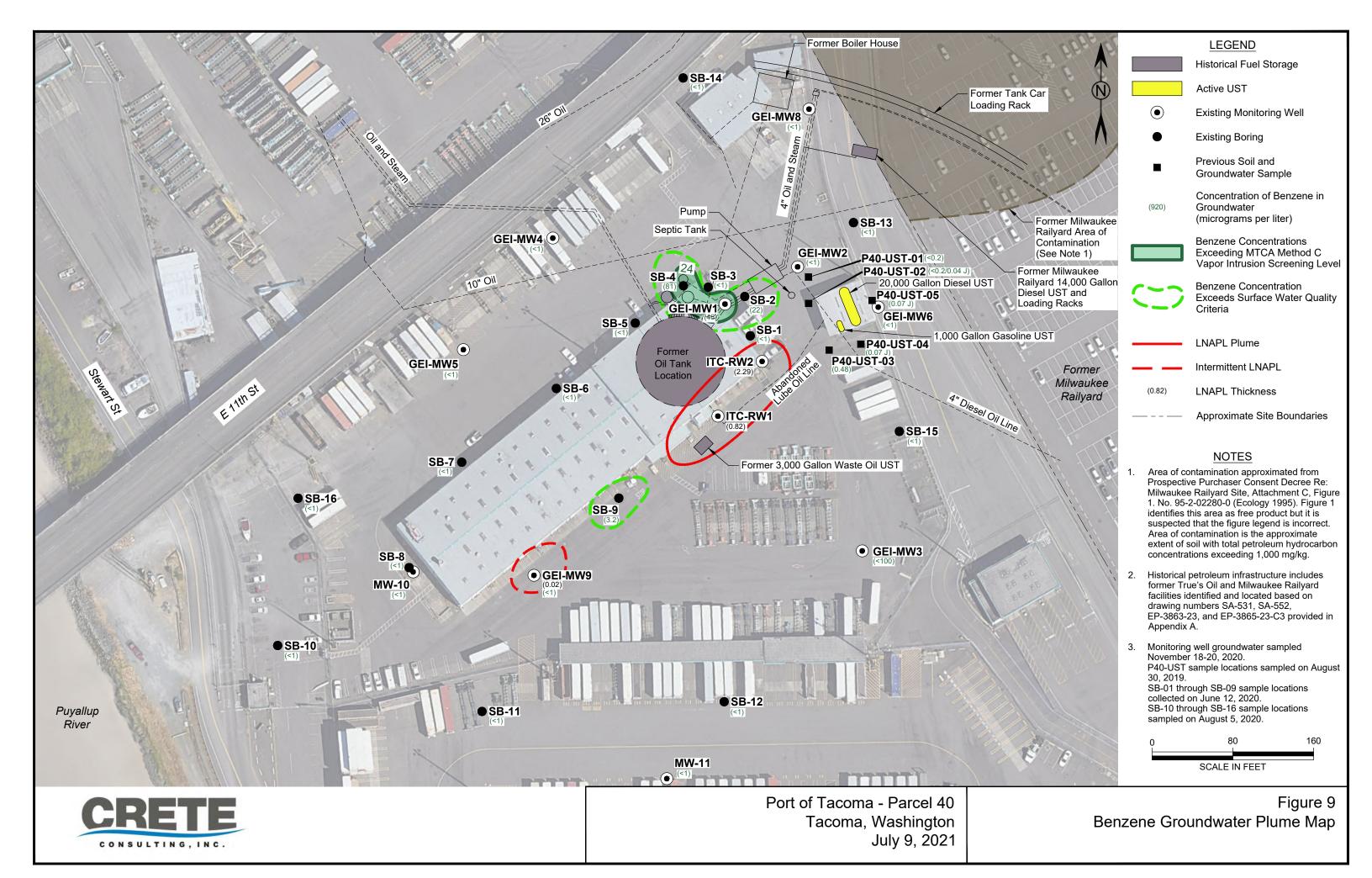

- Indoor Air Sample
- Existing Monitoring Well

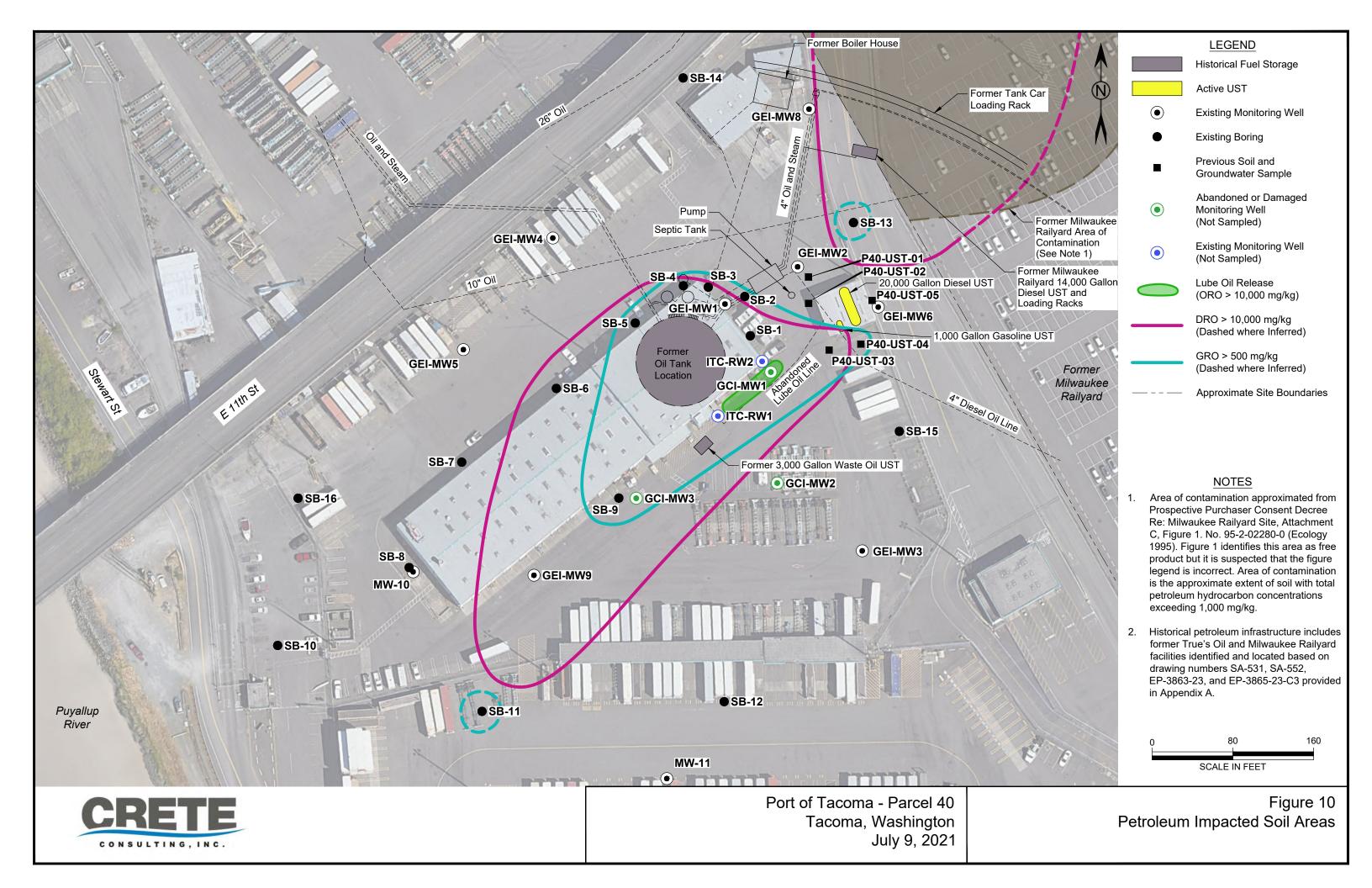


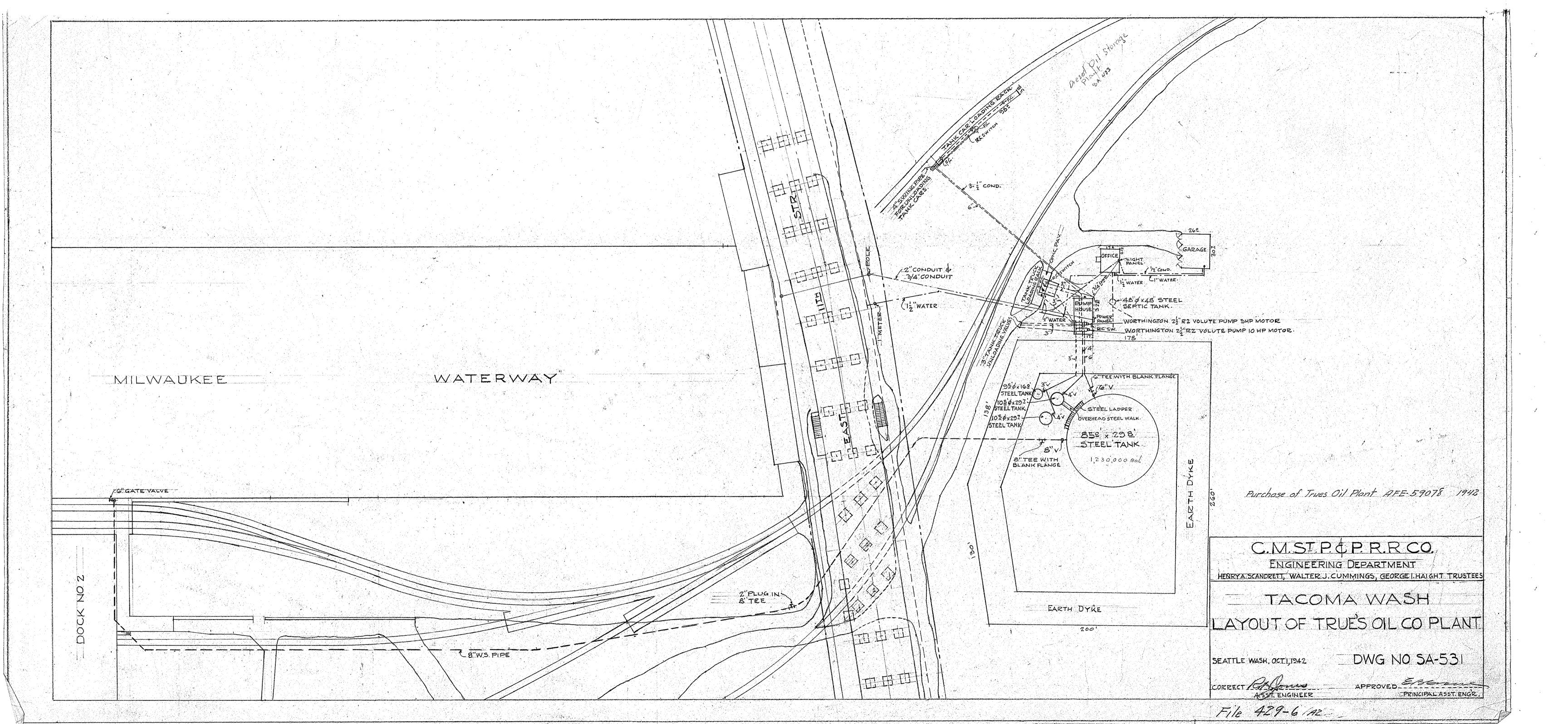


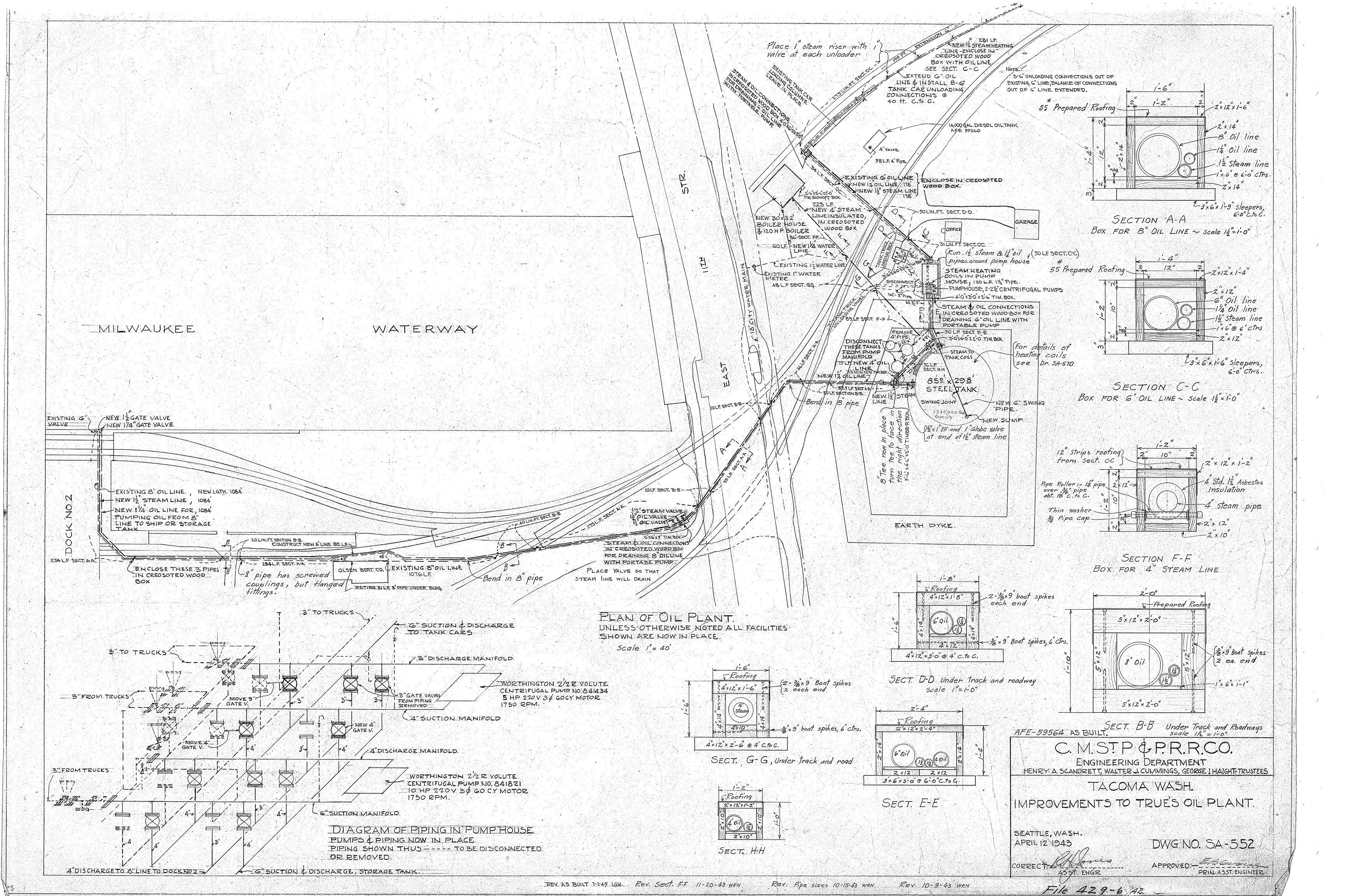

Port of Tacoma - Parcel 40 Tacoma, Washington July 9, 2021

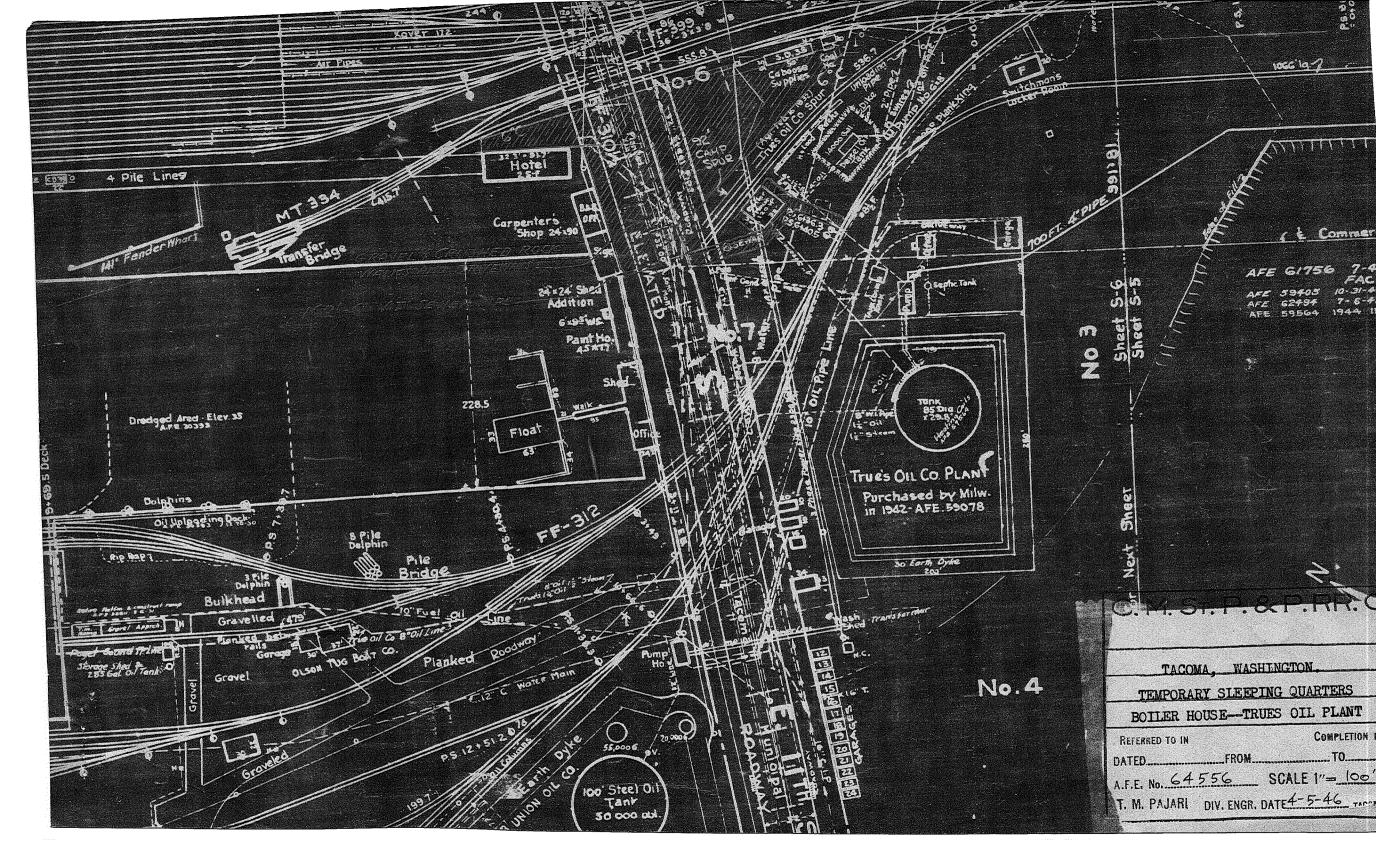

Figure 3 Building 600 Air and Subslab Vapor Sample Locations









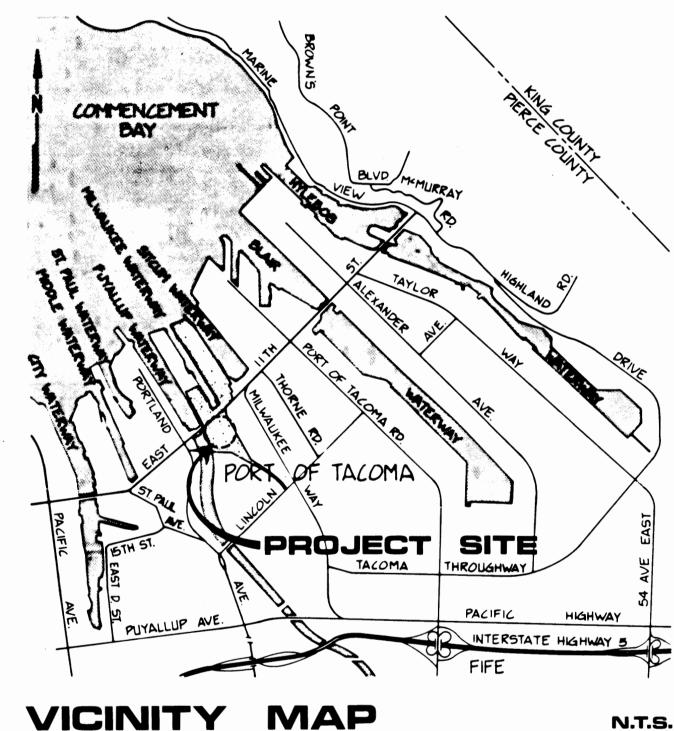


Appendix A Select Historical Documents

PORT OF TACOMA

SITE FACILITIES FOR TACOMA TERMINALS INC. CONTAINER TERMINAL CONTRACT NO. 550

PORT COMMISSION:

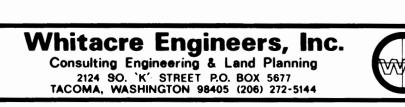

ROBERT G. EARLEY JACK A. FABULICH JOE E. FAKER JOHN A. McCARTHY PATRICK O'MALLEY

PORT STAFF:

RICHARD DALE SMITH EXECUTIVE DIRECTOR

JOHN J. TERPSTRA, P.E. PROJECT MANAGER

ROBERT L. MacLEOD, P.E. CHIEF ENGINEER



CIVIL & ELECTRICAL CONSULTANTS: WHITACRE ENGINEERS, INC. 2124 SOUTH "K" STREET TACOMA, WASHINGTON

GEOTECHNICAL CONSULTANTS: HART-CROWSER & ASSOC., INC. SEATTLE, WASHINGTON

ISSUED FOR CONSTRUCTION 4/5/84

DRAWN KHT	PORT OF TACOMA
CHECKED 12-27-83 CHECKED 12-27-83 CHECKED 12-27-83 CONT. NO. 550	TACOMA TERMINALS, INC. C.F.S. AREA EARTHWORK LOVER SHEET

N.T.S.

ISSUE FOR CONSTRUCTION

INDEX OF

EP-3865-23

EP-3865-23-G1

EP-3865-23-C1

EP-3865-23-C2

EP-3865-23-C3

EP-3865-23-C4

EP-3865-23-C5

EP-3865-23-C6

EP-3865-23-C7

EP-3863-23

SHEET NO.

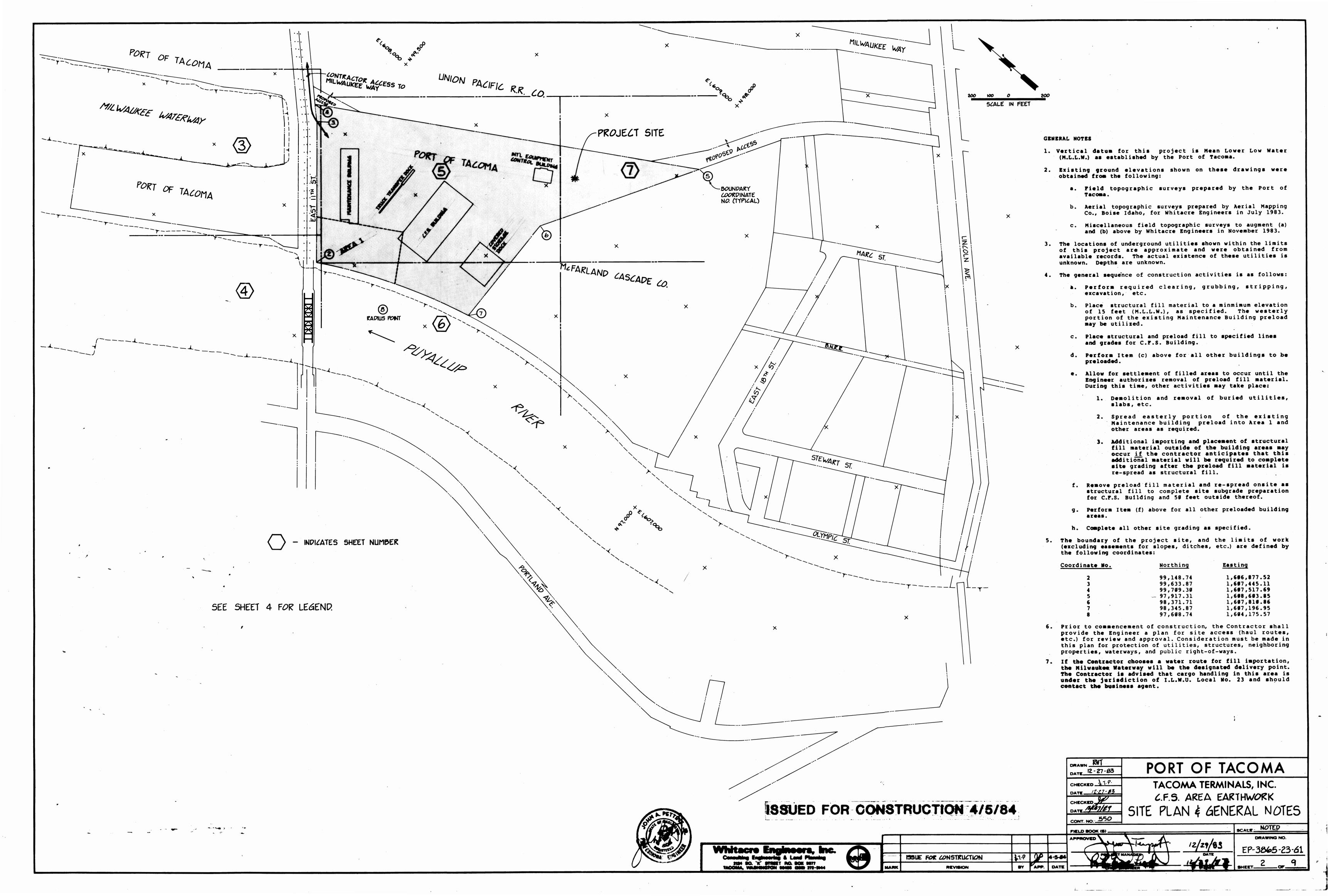
DRAWINGS:

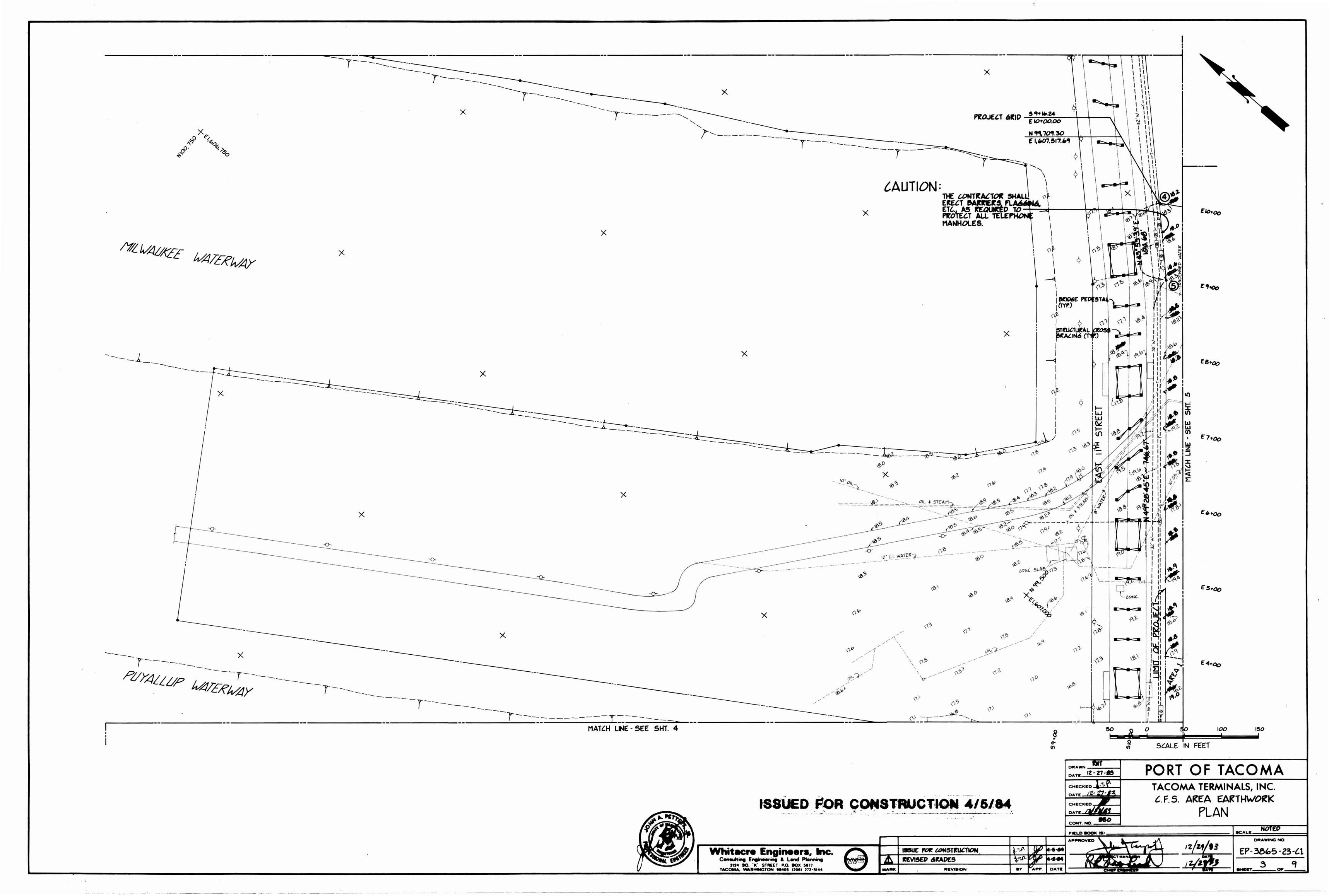
SHEET TITLE

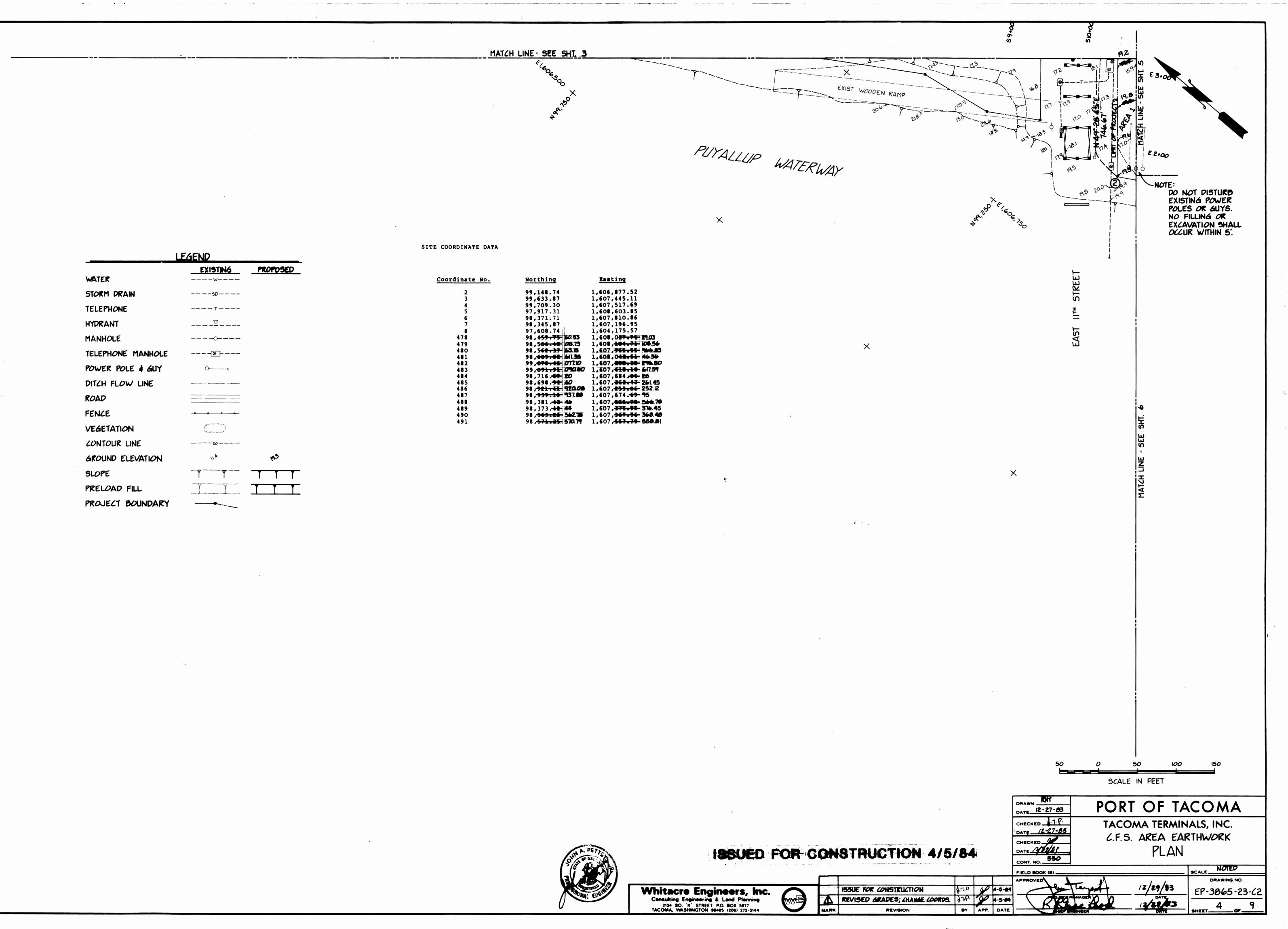
Typical Sections

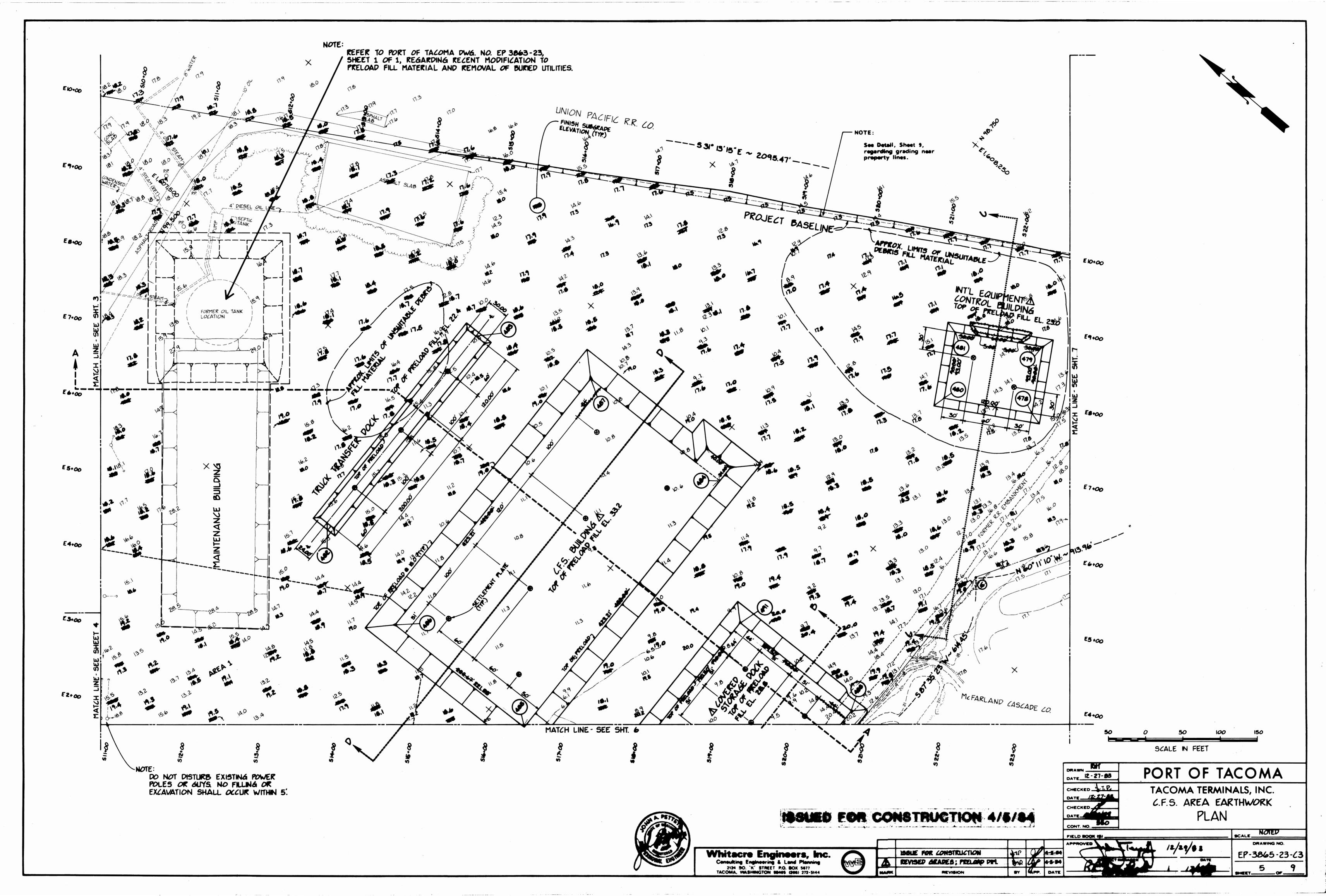
Reference Drawing

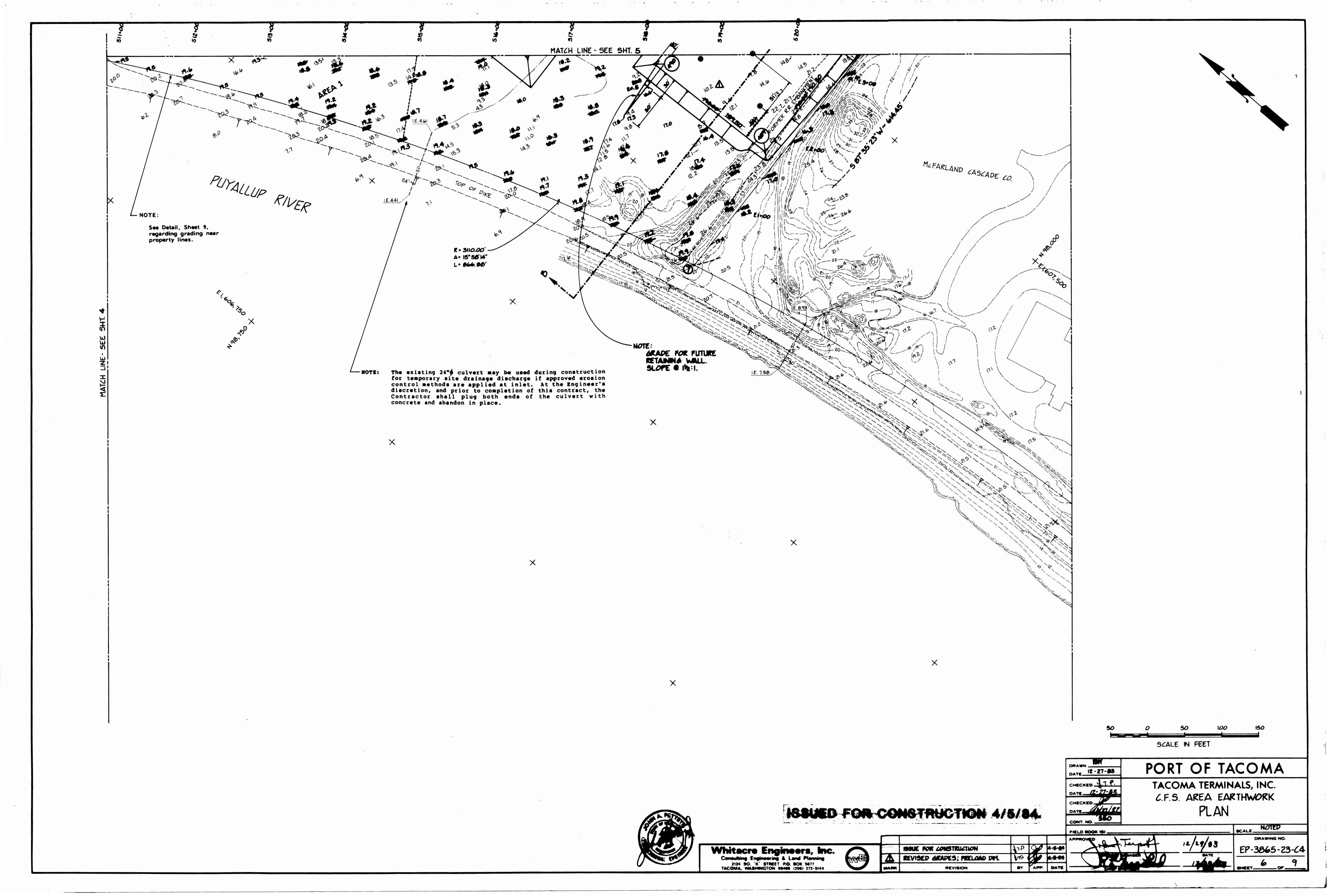
Typical Sections & Details

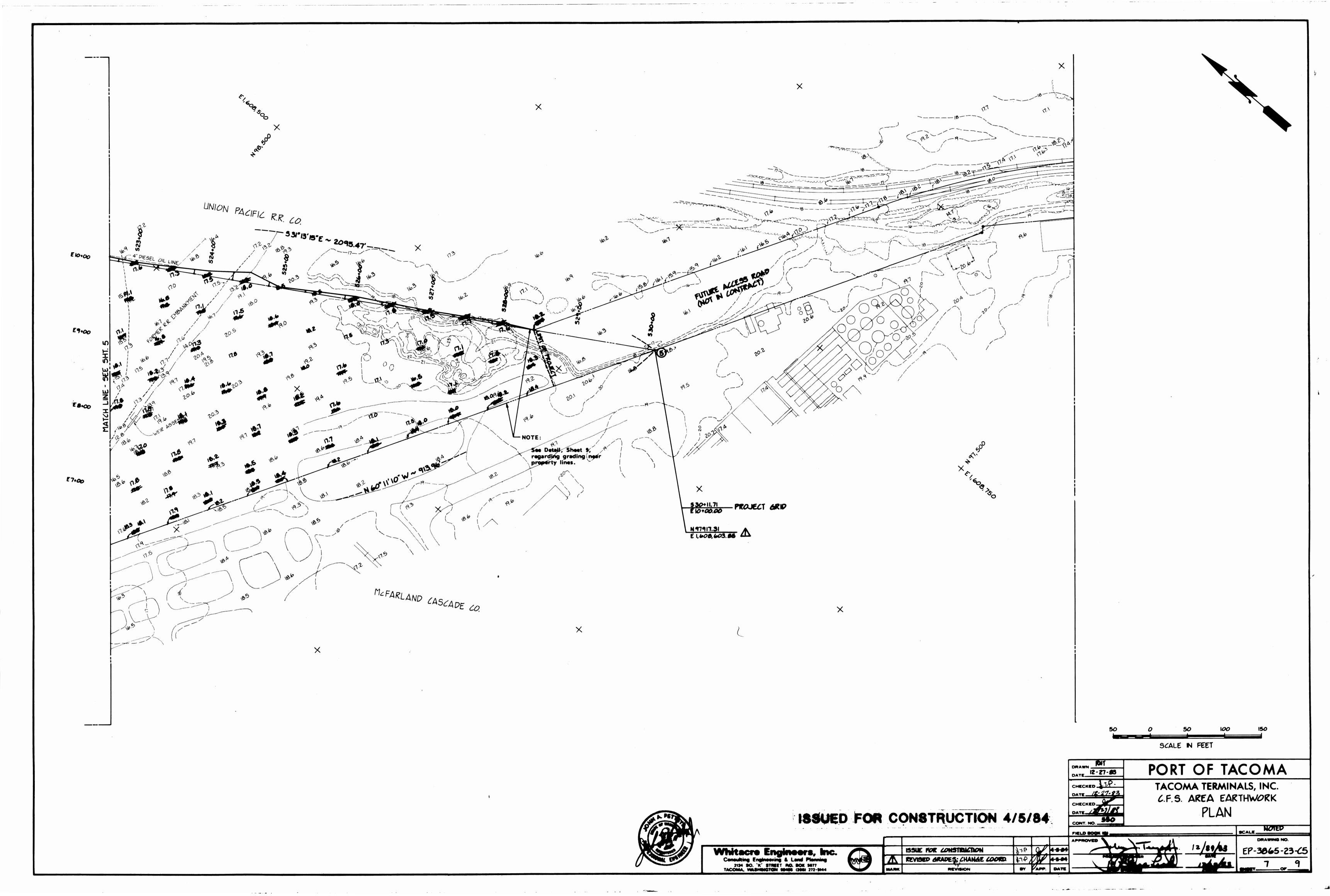

Site Plan & General Notes

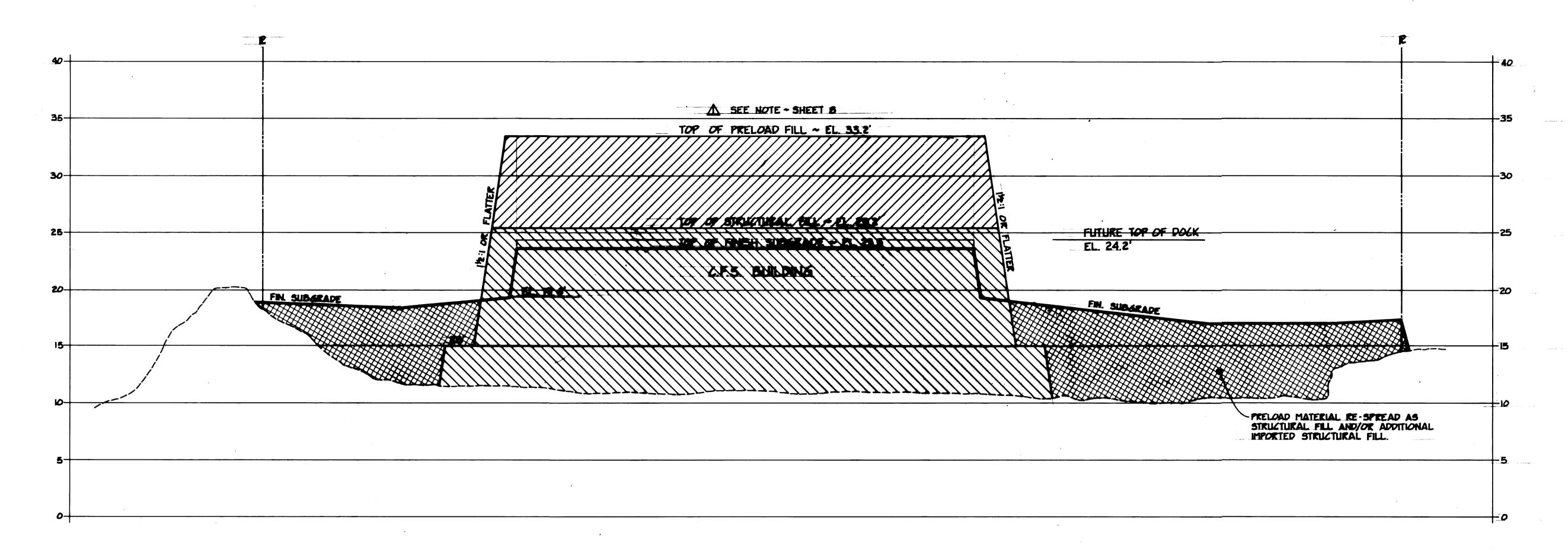

Cover Sheet

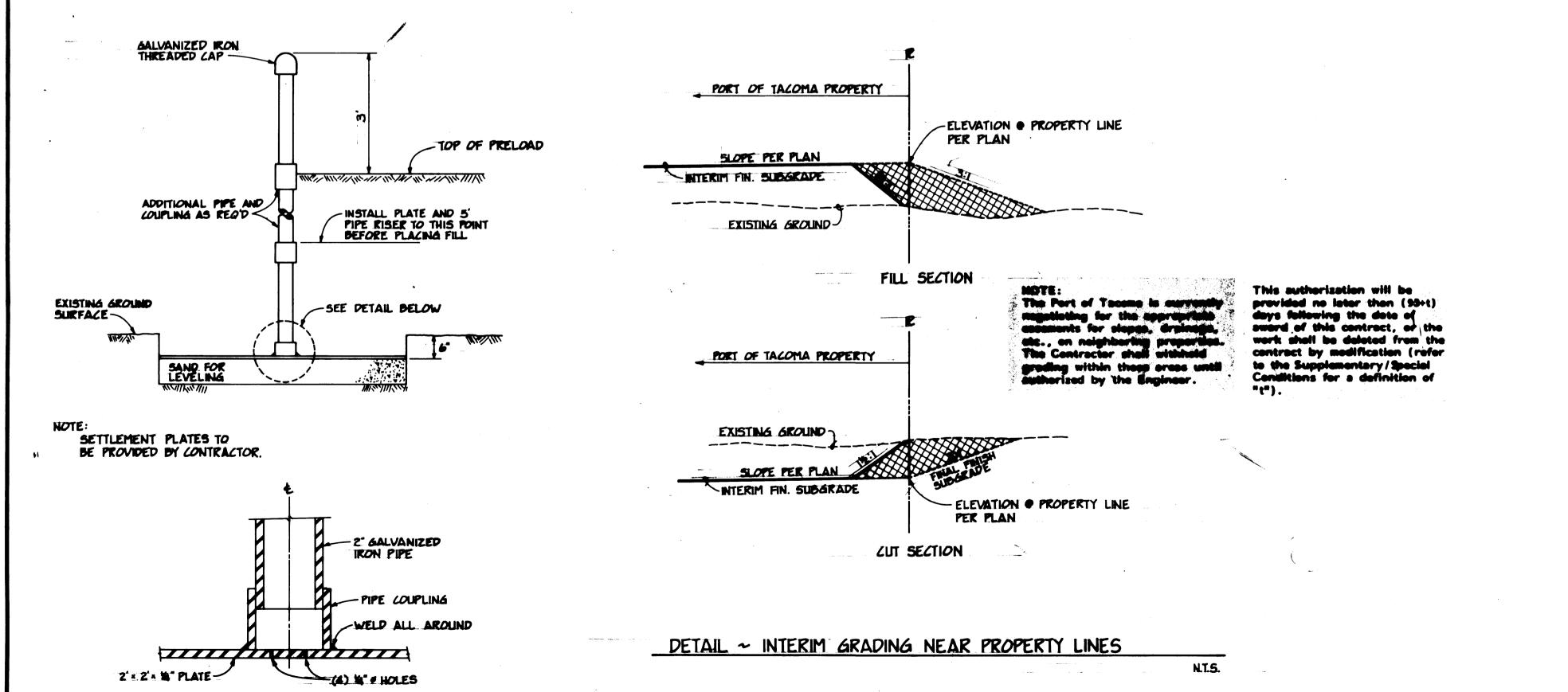

12/21/23


EP-3865-23


DRAWING NO.

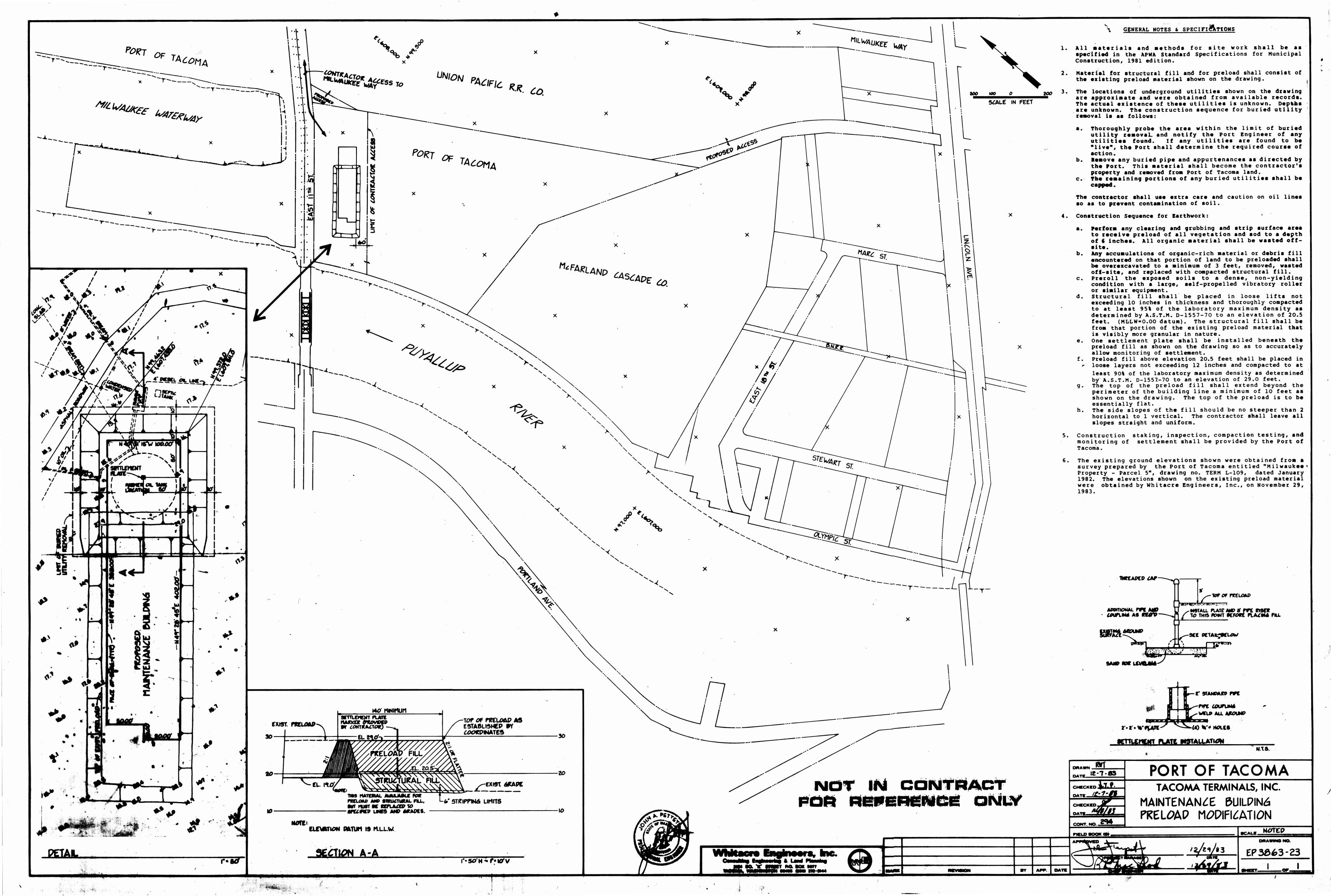






ACTUAL TOP OF PRELOAD ELEVATIONS
SHALL BE ADJUSTED BASED UPON
DENSITY OF PRELOAD MATERIAL AND
SHALL FIRST BE APPROVED BY THE
ENGINEER. C.F.S. BUILDING TOP OF PRELOAD FILL ~ EL. 33.2' COVERED STORAGE DOCK TRUCK TRANSFER MAINTENANCE BUILDING TOP OF PRELOAD FILL -EL 29.0" _____ of the state of th PUTURE TOP OF FILL ~ EL. 22.4' PUTURE TOP OF DOCK ~ EL. 22.9' EXISTING PRELOAD FILL TOP OF STRUCTURAL FILL ~ EL. 18.9" DOXK ~ EL ZLOO EL. 19.4'-2' MINIMUM STRUCTURAL FILL 2' MINIMUM STRUCTURAL FILL - 2' MINIMUM SIRUCTURAL FILL SECTION A-A HORIZ. SCALE - 1" 50" INT'L EQUIPMENT CONTROL BUILDING COVERED STORAGE DOCK TOP OF PRELOAD FILL - EL. 29.0 FIN. SUBGRADE POCK ~ EL. ZLOO' STRUCTURAL FILL SECTION C-C HORIZ. SCALE - 1" = 50" VERT. SCALE - 1" = 5" PORT OF TACOMA DATE 12-27-83 TACOMA TERMINALS, INC. PRELOAD FILL
RE-SPREAD AS
STRUCTURAL FILL
AND/OR ADDITIONAL
IMPORTED
STRUCTURAL FILL C.F.S. AREA EARTHWORK SECTION B-B TYPICAL SECTIONS HORIZ. SCALE - 1" = 50" VERT. SCALE - 1" = 5" 17.P 9 4-5-54 ISSUE FOR CONSTRUCTION ISSUED FOR CONSTRUCTION 4/5/84

HORIZ. SCALE - 1' - 50'


SETTLEMENT PLATE INSTALLATION

18SUED FOR CONSTRUCTION 4/6/84

370 07 1-00 ISSUE FOR CONSTRUCTION A REVISED GRADES

DRAWN RHT PORT OF TACOMA TACOMA TERMINALS, INC. C.F.S. AREA EARTHWORK TYPICAL SECTIONS & DETAILS SCALE NOTED

Appendix B

Indoor and Ambient Air Sampling Report and Sub-Slab Vapor Analytical Data

INDOOR AND AMBIENT AIR SAMPLING

PORT OF TACOMA PARCEL 40 MAINTENANCE GARAGE TACOMA, WASHINGTON

Project Number: 013-006 TO3

August 26, 2020

Prepared for:

Crete Consulting Incorporated, PC and The Port of Tacoma

Prepared by:

EMB Consulting, LLC

Project Title:	Indoor and Ambient Air	Sampling
FIUIEUL IIIIE.	indoor and Ambient Air	Sampling

Port of Tacoma Parcel 40

Maintenance Building Tacoma, Washington

Prepared For: Crete Consulting Incorporated, PC

108 South Washington Street, Suite 300

Seattle, Washington 98104

EMB Consulting Project Number: 1563

Elisabeth Black, CIH Certified Industrial Hygienist EMB Consulting LLC

E. Blovell

TABLE OF CONTENTS

1.0	INTRODUCTION	1
2.0	BACKGROUND	1
2.1	Site Description	1
2.2	Site Environmental Data	1
	METHODS	
4.0	RESULTS	4
4.1	Indoor Air and Outdoor Ambient Air	5
4.2	Atmospheric Conditions	5
4.3	Building Conditions	6
5.0	CONCLUSIONS AND RECOMMENDATIONS	6
6.0	REFERENCES	7

Table

Table 1 - Summary of Indoor and Ambient Air Sampling Results Table 2 - Derivation of Total TPH Cleanup Level for Indoor Air

Figures

Figure 1 - Ambient Sample Location Plan

Figure 2 - Indoor Sample Location Plan Parcel 40 Building – East

Figure 3 - Indoor Sample Location Plan Parcel 40 Building - West

Attachment A

Friedman & Bruya, Inc. Laboratory Analytical Reports

Attachment B

Weather Underground Weather Data Summary Station KWATACOM280 July 4 and July 5, 2020

ACRONYMS

μg/m³ micrograms per cubic meter

ACGIH American Conference of Governmental Industrial Hygienists

APH Air-Phase Petroleum Hydrocarbons

Building Parcel 40 Maintenance Garage

CLARC Cleanup Levels and Risk Calculations

COCs contaminants of concern

Crete Consulting Incorporated, PC

CUL Cleanup Level

DOSH Washington State Division of Occupational Safety and Health

Ecology Washington State Department of Ecology

EMB EMB Consulting LLC

EPA Environmental Protection Agency

FBI Friedman & Bruya, Inc.

GC/MS Gas Chromatography/Mass Spectrophotometry

GVVs Group Guidance Values

HVAC Heating Ventilation and Air Conditioning

SDSs Safety Data Sheets

MTCA Model Toxics Control Act

OEL Occupational Exposure Limit

PEL Permissible Exposure Limit

Port of Tacoma

RL Reporting Limit

TPH Total Petroleum Hydrocarbons

VOCs Volatile Organic Compounds

1.0 Introduction

This document presents the results of indoor and ambient air sampling conducted in July 2020 for the Port of Tacoma (Port) Parcel 40 Warehouse Building (Building). The sampling was conducted based on the recent discovery by Crete Consulting Incorporated, PC (Crete) of petroleum hydrocarbons in soil and groundwater beneath the Building. The objective of the indoor and ambient air sampling was to determine if potential vapor intrusion from contaminants beneath the Building could impact indoor air for the Building.

The following sections of this report describe Building background, sampling methods, results, conclusions, and recommendations. Attachments to this report include summary tables of air monitoring data, figures of Parcel 40 and the Building with sample locations, and the laboratory analytical report. Data on ambient weather during sampling is also included.

2.0 Background

2.1 Site Description

Parcel 40 consists of an asphalt-paved lot with a 38,000 square foot maintenance garage. The Building foundation is slab on grade with a steel frame structure and sheet metal walls and roof. The Building has single-level open bays on its east and west ends, with a two-level office/storage area between. The Building is currently occupied by SSA Marine and is used for marine terminal equipment maintenance.

The maintenance garage contains chemical products typically used for vehicle and heavy equipment maintenance, to include oils, greases, adhesives, solvents, and degreasers. In addition, there is a paint booth on the west end of the Building, which appears to be in use.

A fueling shed is located on the east side of Parcel 40, approximately 70 feet from the east end of the Building. Otherwise, the maintenance garage is surrounded by paved road and parking areas. The 11th Street bridge borders the north side of Parcel 40.

2.2 Site Environmental Data

Benzene was initially identified as exceeding the vapor intrusion groundwater screening level in a sample from monitoring well GEI-MW-1 collected in August 2019. Follow-up monitoring well sampling in March 2020 confirmed the August 2019 benzene result, confirmed elevated groundwater TPH results, and indicated that no additional VOCs were present in groundwater above the vapor intrusion screening levels (Crete 2020).

Additional soil and groundwater testing was performed in June 2020 around the perimeter of the Building. Benzene exceeded the vapor intrusion screening level in one other location toward the northeast corner of the Building. Elevated gasoline and diesel range organics were also identified in soil and groundwater around the majority of the perimeter of the Building with the exception of the west side and about the western 150 feet of the north side.

3.0 Methods

This section provides a summary of the scope of work required to perform the indoor and ambient air sampling for the Building.

Prior to mobilizing to the Building for sampling, EMB Consulting, LLC (EMB) reviewed Safety Data Sheets (SDSs) provided by SSA Marine to determine if chemical products resemble those being assessed for vapor intrusion.

Based on the Crete environmental sampling data, the Air-Phase Petroleum Hydrocarbon (APH) analysis and Environmental Protection Agency (EPA) Method TO-15 were selected as the sampling and analytical method to evaluate indoor and ambient air. The APH method is applied for evaluation of gasoline and the volatile fraction of diesel fuel oil. The TO-15 method is applied for volatile organic compounds (VOCs). The APH method provides concentration data in air for the following contaminants of concern (COCs).

volatile aliphatic hydrocarbons in the range of C5 through C8 (APH EC5-8 aliphatics); aliphatic hydrocarbons in the range of C9 through C12 (APH EC9-12 aliphatics); and aromatic hydrocarbons in the range of C9 through C10 (APH C9-10 aromatics).

The TO-15 method provides concentration data in air for the following COCs.

• Volatile organic compounds (VOCs) benzene, toluene, ethylbenzene, xylenes, naphthalene; and

Samples were collected in accordance with EPA Method TO-15 for volatile organic compounds (VOCs) and the APH Method using six-liter summa-type evacuated cylinders with regulators calibrated to collect samples over 24 hours. Sample collection methods are explained in greater detail in the work plan (Crete 2020). The APH/TO-15 method uses evacuated cylinders to draw an air sample over a specified period of time to be analyzed in a laboratory by gas chromatography/mass spectrometry (GC/MS). The analytical laboratory selected for this project is Friedman & Bruya, Inc (FBI).

The field sampling program was carried out during a 24-hour period, over two consecutive days to account for fluctuations in temperature, ambient pressure, surrounding traffic and Port activities, and other environmental conditions. Changes in these conditions can affect the flow of soil gas into the indoor space.

Weather data for the Tacoma area for July 4 through 5, 2020 are provided with this report in Attachment B and summarized in the Results section.

Beginning on the morning of Saturday July 4, 2020, EMB initiated five samples inside the Building. At the same time, EMB collected two ambient outdoor air samples on Parcel 40. The outdoor samples were collected from presumed upwind and downwind locations to provide data on background levels of the COCs in the project area. Figure 1 shows the location of the two ambient samples. Figure 2 shows the location of the indoor samples on the east side of the warehouse. Figure 3 provided with this report shows the location of the indoor samples on the west side of the warehouse.

The samples collected are described below. In addition, shop equipment or chemicals identified nearby that could impact results are also described. The Building was vacant during periods when samples were placed on July 4, 2020 and when picked up on July 5, 2020. It is not known if SSA employees entered the Building between those two periods. Exterior and interior doors, including garage doors, were closed for the duration of sampling. There is no central ventilation system in the building.

- **Sample AW040720** is an ambient outdoor air sample attached to the fence on the west side of Parcel 40.
- **Sample AE040720** is an ambient outdoor air sample attached to the fence on the east side of Parcel 40.
- Sample IWB13040720 is an indoor sample collected from the west side of the Maintenance Building. The sampling equipment was located on portable stairs in Bay 13 at approximately 4.5 feet above the floor. There was a hydraulic lift located within 10 feet of the sample, but SSA Marine reported that the lift does not contain hydraulic fluid. In addition, the paint booth is located on the west end of the warehouse, approximately 80 feet west of the sample location.
- Sample IPO040720 is an indoor sample collected from the Parts Office in the central area of the Maintenance Building on the ground floor. The sampling equipment was located on a stool at approximately three feet above the floor. The door to the Parts Office was closed during sampling. There were no chemical products observed in the Parts Office.
- Sample INWOFF040720 is an indoor sample collected from the northwest office in the central area of the Maintenance Building on the ground floor. The sampling equipment was located on a ladder at approximately four feet above the floor. The door to the room was closed during sampling. There were no chemical products observed in the northwest office.
- Sample IE040720 is an indoor sample collected from the east side of the Maintenance Building. The sampling equipment was located on a work

bench at approximately four feet above the floor. There was a solvent degreaser located near the sample, approximately 20 feet away. In addition, workbench chemicals in small quantity containers were located throughout the area. These included spray paint, caulks and adhesives, and lubrication oils.

• **Sample IE100040720** is a duplicate sample collocated with Sample IE040720.

At the completion of sampling on July 5, 2020, the seven samples were retrieved. On Monday July 6, 2020 the samples were hand delivered to FBI in Seattle, Washington for analysis.

The analytical results are summarized in Table 1 attached to this report. Each of the individual VOCs and hydrocarbon ranges identified by the APH/TO-15 analysis were compared with Washington State Department of Ecology (Ecology) Model Toxics Control Act (MTCA) Cleanup Levels and Risk Calculations (CLARC) Method C cleanup levels (CULs) for indoor air on industrial properties. A Total TPH CUL was calculated using the method demonstrated in Table 2 attached to this report. Outdoor ambient air values are considered background for comparison with indoor air samples.

The Washington State Division of Occupational Safety and Health (DOSH) Permissible Exposure Limits (PELs) are also listed in Table 1 for comparison with the MTCA CULs. These levels are three to five times higher than MTCA CULs. The PELs are applicable to the potential chemical exposure created by the work conducted by SSA Marine activities or by chemical products stored by SSA Marine at the site. They do not apply to any contribution to workplace VOCs resulting from contamination beneath the building.

Finally, the American Conference of Governmental Industrial Hygienists (ACGIH) has developed Group Guidance Values (GGVs) for certain refined hydrocarbon solvent mixtures. There are GGVs for specific petroleum compound groups similar to the ranges reported in the APH Method. The ACGIH has developed the GGVs based on similar chemical and toxicological characteristics. GGVs may be used as occupational exposure limits (OELs) when the mixture does not contain a compound for which specific OELs have been established. The ACGIH GGVs for Hydrocarbon Solvent Vapor Mixtures are included in Table 1. The GGVs are applicable to the potential chemical exposure created by the work conducted by SSA Marine activities or by chemical products stored by SSA Marine at the site. They do not apply to any contribution to workplace VOCs resulting from contamination beneath the building.

4.0 Results

The results of sampling for indoor air and ambient outdoor air at the Parcel 40 on July 4 and 5, 2020 are described below. Analytical results for indoor air and

outdoor ambient air are summarized in Table 1 attached to this report. The FBI laboratory report is provided in Attachment A.

4.1 Indoor Air and Outdoor Ambient Air

The ambient air sample results from the east and west sides of Parcel 40 did not have detectable concentrations of the VOCs, with the exception of naphthalene, which was detected in both samples. Naphthalene was detected at 0.12 micrograms per cubic meter of air (μ g/m³) in the east sample (AE040720). The western ambient sample (AW040720) result was reported at 0.16 μ g/m³. The analytes represented by the three APH ranges were not detected at or above laboratory reporting limits (RLs) in either ambient sample. The TPH CUL was derived assuming compounds not detected are present at the full reporting limit.

For the indoor air samples, the VOCs were detected above laboratory RLs in all indoor samples, but none were detected in concentrations above the MTCA Method C CUL. VOCs commonly found in paint (toluene, ethylbenzene, and xylenes) are identified in higher concentrations in the West Bay sample (IWB13040720), which is close to the paint booth. This appears to demonstrate impacts to indoor air for the COCs from SSA Marine operations.

APH EC9-10 aromatics were not identified in any indoor air sample above the laboratory RL. APH EC5-8 aliphatic and APH EC9-12 had detectable levels in all indoor samples. The APH EC5-8 aliphatic concentrations are higher in the west portion of the warehouse than the east portion; APH EC9-12 aliphatics are higher in the east portion of the warehouse than the west portion. The reason for this difference cannot be determined based on the available data.

It appears likely that the APH EC9-12 aliphatics are at least partially associated with soil and groundwater contamination beneath the Building. The Total APH concentrations are higher in the areas where a subsurface source has been identified (Indoor-East) and chemical product use in that area does not differ substantially from the use on the other side of the building (Indoor-West Bay 13). The addition of the APH ranges plus detectable VOCs exceed the regulatory criteria for total petroleum hydrocarbons (TPH) for this project of 310 $\mu g/m^3$ in all five indoor samples.

All COCs detected in indoor sample results were well below DOSH PELs, where they exist.

All hydrocarbon ranges detected in indoor sample results were well below ACGIH GVVs, where they exist.

4.2 Atmospheric Conditions

The influence of barometric pressure and ambient conditions on the potential release of soil vapor to ambient and indoor air was also evaluated in this

assessment. Changes in atmospheric pressure may create a "piston-like" force on soil vapor, possibly causing a cyclic up and down flow of contaminant vapors into and out of the building. Soil vapor compression and expansion in response to barometric pressure fluctuations may alternately enhance or inhibit vapor intrusion. Vapor intrusion into buildings is typically higher during periods of low barometric pressure.

The barometric pressure readings were consistent during the sampling event conducted between July 4 and July 5, 2020. There was a high pressure system in place during sampling with minor fluctuation between 30.08 to 30.13 inches of mercury. Temperature fluctuated between 57 and 68 degrees Fahrenheit. Wind was from the north-northwest for most of the sampling duration. Weather data for the two days on which sampling occurred are included with this report in Attachment B.

4.3 Building Conditions

According to Building drawings, there is a Heating, Ventilation, Air Conditioning (HVAC) system in the building. The system was not operating during this sampling event. SSA has characterized the system as "shop exhaust fans", noting that they are not used for HVAC or as vehicle exhaust extraction systems. SSA noted that they run continuously in the winter, but not during warmer months.

The paint booth may create an east-to-west draw during operation, but it was not in operation during sampling.

There were chemicals present in the east and west building bays, but not in the central areas sampled (Parts Office, Northwest Office). Many of the chemical products on site are petroleum based, but considering the types and volume of products observed, these chemical products are not likely to generate the concentrations of APH aliphatics identified across the Building space.

5.0 Conclusions and Recommendations

Based on the results of this assessment, it appears likely that petroleum hydrocarbons in soil and groundwater beneath the building are impacting indoor air through vapor intrusion. In the short term, the Port should encourage the tenant to continuously run the shop exhaust fans and keep bay doors open to dilute indoor air with fresh air as much as possible. Portable fans may also be used to increase circulation between indoor and outdoor spaces. The Port should plan for a more proactive solution to minimize vapor intrusion, such as a subslab vapor extraction system or interior ventilation system to dilute indoor air.

6.0 References

ACGIH. 2019 Threshold Limit Values for Chemical Substances and Physical Agents & Biological Exposure Indices - Appendix H.

Crete Consulting, Inc. Direct Push Soil, Groundwater and Tier II Vapor Intrusion Assessment Work Plan, Port of Tacoma's Parcel 40 Maintenance Building Project Number: 013PT-006 TO3. June 10, 2020.

Tables

Table 1 - Summary of Indoor and Ambient Air Sample Results Port of Tacoma Parcel 40 Warehouse Building July 4 to July 5, 2020

				Sample Location Sample ID Sample Duration						
	MTCA Screening	DOSH PEL	ACGIH GGVs	Ambient West	Ambient East	Indoor - West Bay 13	Indoor - Parts Office	Indoor - NW Office	Indoor - East	Indoor - East (duplicate)
	Level (indoor air) Method C	(8hr TWA) ^a	for Hydrocarbons	AW040720 09:54 to 09:54	AE040720 10:04 to 10:04	IWB13040720 10:13 to 10:13	IPO040720 10:23 to 10:23	INWOFF040720 10:31 to 10:31	IE040720 10:37 to 10:37	1E100040720 10:37 to 10:38
Analytes	all values in units of μg/m³									
Analysis for Volatile Cor	npounds By EF	PA Method TO-	15							
Benzene	3.20			< 0.32	<0.38	0.58	0.74		0.79	
Toluene	5000	376,810		<19	<23	39	<23	<19	<19	
Ethylbenzene	1000	434,190		< 0.43	<0.52	14	6.3	5.1	1.3	
m,p-Xylene	100			<0.87	<1	63	30	25	5.5	
o-Xylene	100			<0.43	<0.52	19	9.8	8.3	2.1	1.7
Naphthalene	0.74	52,430		0.16	0.12	0.39	0.36	0.34	0.32	0.36
Analysis For Volatile Co.	mpounds By M	ethod MA-APH	1							
APH EC5-8 aliphatics				<30	<36	240	160	110	130	130
ACGIH C5-8 aliphatics			1,500,000							
APH EC9-12 aliphatics				<35	<42	1,500°	1,200 ^c	1,100 ^c	2,600°	2,700°
ACGIH C9-15 aliphatics			1,200,000							
APH EC9-10 aromatics				<25	<30	<25	<30	<25	<25	<25
ACGIH C9-15 aromatics			1,200,000							
TPH ^d	310.00			111.21	129.54	1,900.97	1,460.20	1,293.25	2,784.01	2,883.44

Table 1 - Summary of Indoor and Ambient Air Sample Results Port of Tacoma Parcel 40 Warehouse Building July 4 to July 5, 2020

MTCA = Model Toxics Control Act

DOSH = Washington State Division of Occupational Safety and Health

PEL = Permissible Exposure Limit

8hr TWA = 8 hour Time-Weighted Average

ACGIH = American Conference of Governmental Industrial Hygienists

GGVs - Group Guidance Values

μg/m³ = micrograms per cubic meter

EPA = Environmental Protection Agency

MA-APH = Massachusetts Department of Environmental Protection Method for the Determination of Air-Phase Petroleum Hydrocarbons

APH = Air-Phase Petroleum Hydrocarbons

TPH = Total Petroleum Hydrocarbons

a DOSH PELs are cited in units of parts per million for the analytes listed. The PELs have been converted to units of μg/m³ for the purpose of this report.

^b The GGVs listed in Table 1 are reproduced from Column B of the ACGIH Table 1 Group Guidance Values found in Appendix H of the ACGIH publication, 2019 Threshold Limit Values and Biological Exposure Indices.

^c The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

^d TPH is based on Petroleum Vapor Intrusion (PVI): Updated Screening Levels, Cleanup Levels, and Assessing PVI Threats to Future Buildings Implementation Memorandum No. 18, dated January 10, 2018. This TPH limit assumes compounds not detected are present at the full reporting limit.

Table 2 - Derivation of Total TPH Cleanup Level for Indoor Air Port of Tacoma Parcel 40 Warehouse Building

The Total TPH Cleanup Level for indoor air for the Parcel 40 Building was derived by the following method.

- Step 1. Determine which Cleanup method criteria are appropriate for the project. Industrial standards were selected for this project MTCA Method C.
- Step 2. Select air samples with high TPH concentrations for fractionation. For these data, the derivation was conducted for Indoor-West Bay 13 and Indoor-East.
- Step 3. Use the fractionated results in the equation below to calculate a Method C air CUL.
- Step 4. Compare the TPH concentrations in compliance air samples with the Method C air CUL.

Individual petroleum component:
$$CUL_i = \frac{RfDi_i \, x \, ABW \, x \, UCF \, x \, HQ \, x \, AT}{BR \, x \, ABS_i \, x \, ED \, x \, EF}$$
 (WAC 173-340-750, Equation 750-1)

TPH cleanup level:
$$CUL_{TPH} = \frac{1}{\sum_{i=1}^{i=n} \frac{F_i}{CUL_i}}$$

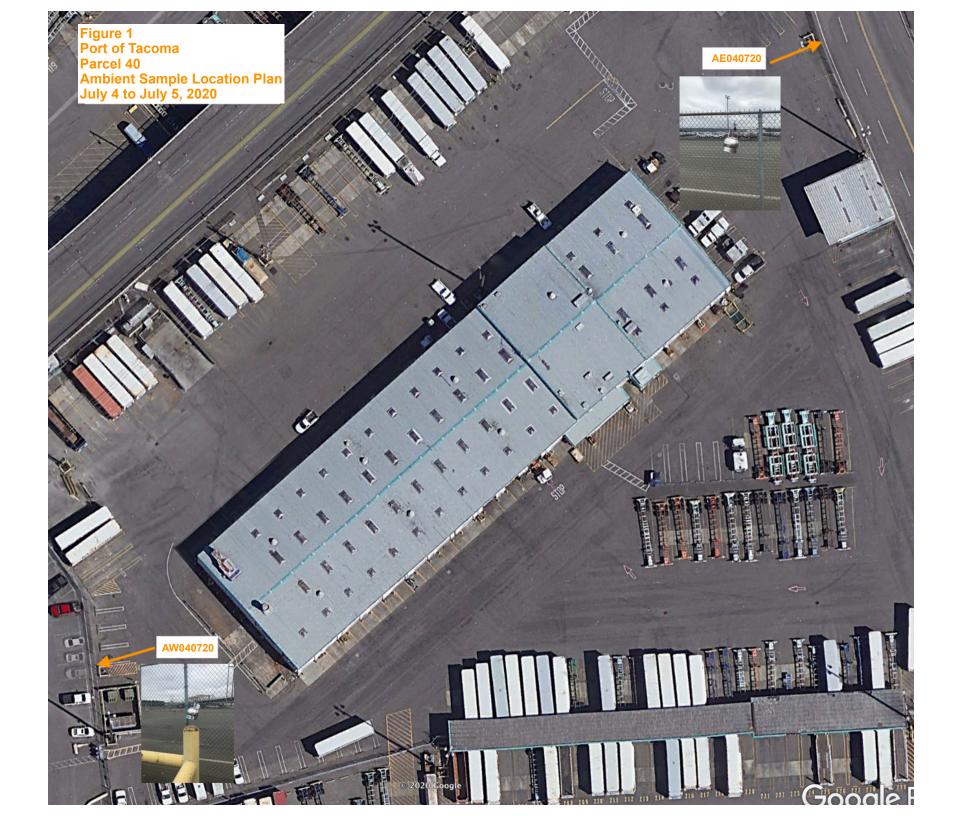
source: https://fortress.wa.gov/ecy/publications/documents/1709043.pdf

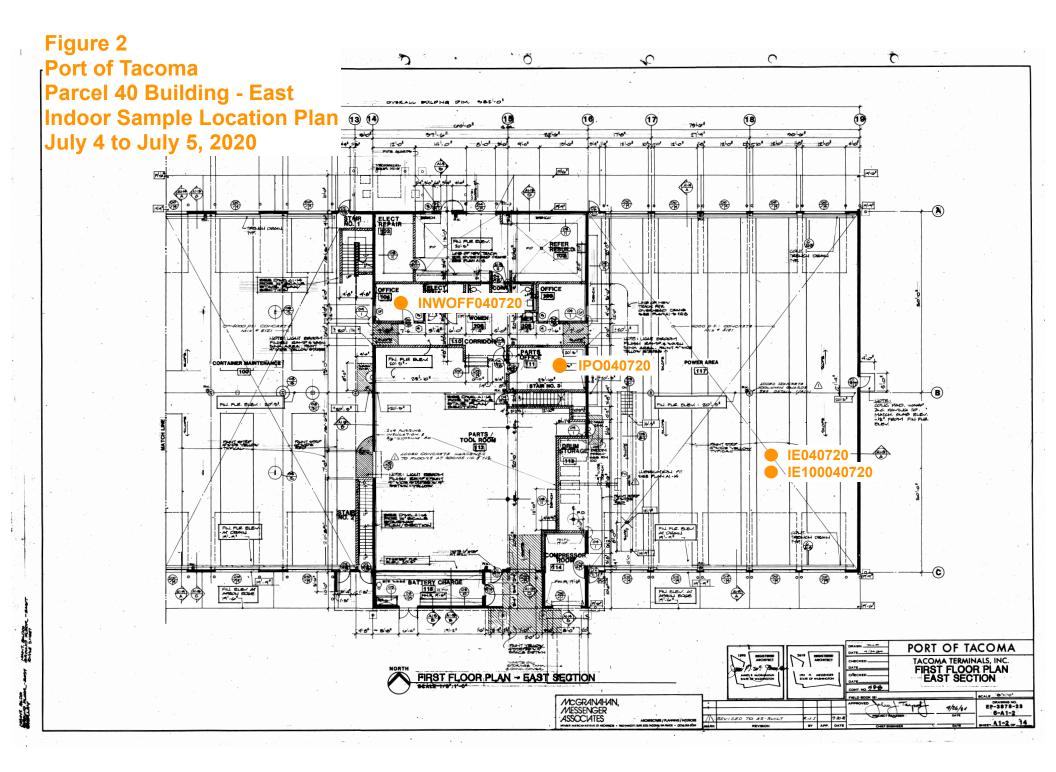
Indoor - West Bay 13

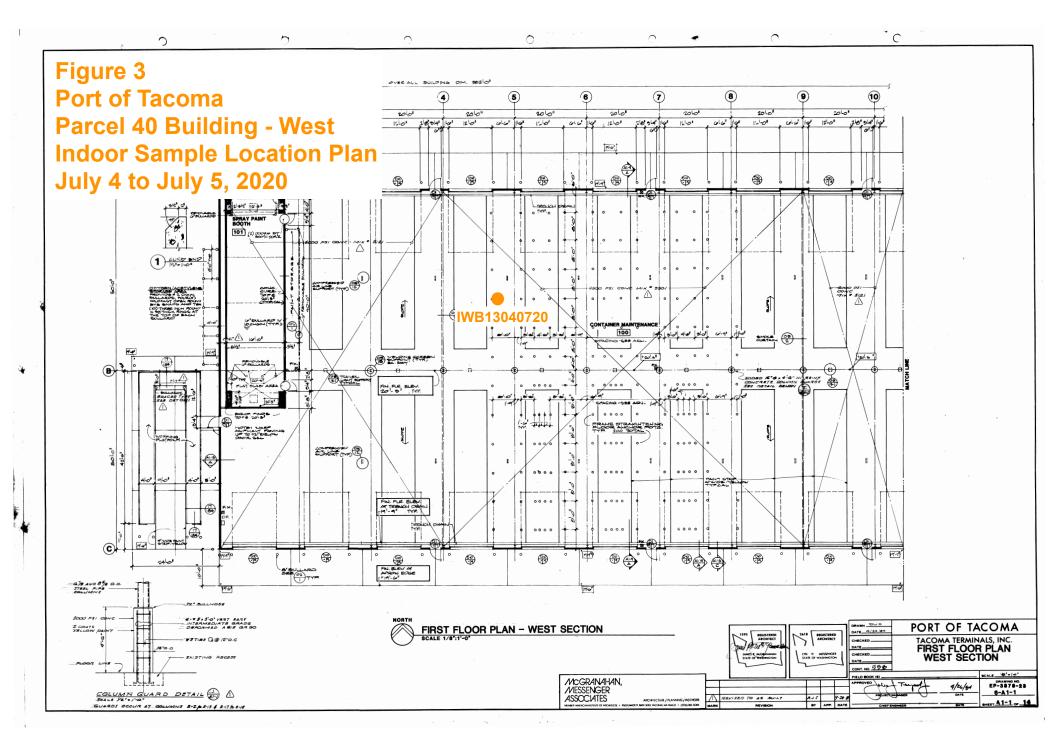
Petroleum Fraction or Compound	Measured Concentration	Fraction of Total Concentration	METHOD C Total TPH Non-Carcinogenic CULi	Fi / CULi
	(µg/m³)	(Fi)	(µg/m³)	
Aliphatics EC>5-8	240	0.126	5.95E+03	2.12E-05
Aliphatics EC>9-12	1,500	0.789	2.98E+02	2.65E-03
Aromatics EC>9-10	25	0.013	3.98E+02	3.30E-05
Benzene	0.58	0.000	3.00E+01	1.02E-05
Toluene	39	0.021	4.90E+03	4.19E-06
Ethylbenzene	14	0.007	1.00E+03	7.35E-06
Xylenes	82	0.043	1.02E+02	4.25E-04
Naphthalene	0.39	0.000	3.02E+00	6.80E-05
Total TPH	1900.97	1		310.44

The Total TPH Non-carcinogenic CUL = 1 / Σ (Fi / CULi)

Total TPH limit assumes compounds not detected are present at the full reporting limit.


Indoor - East


			METHOD C	
Petroleum Fraction or	Measured Concentration	Fraction of Total	Total TPH	
Compound	Site-Specific Sample	Concentration	Non-carcinogenic CULi	Fi / CULi
	(µg/m³)	(Fi)	(µg/m³)	
Aliphatics EC>5-8	130	0.047	5.95E+03	7.85E-06
Aliphatics EC>9-12	2,600	0.934	2.98E+02	3.14E-03
Aromatics EC>9-10	25	0.000	3.98E+02	0.00E+00
Benzene	0.79	0.000	3.00E+01	9.47E-06
Toluene	19	0.000	4.90E+03	0.00E+00
Ethylbenzene	1.3	0.000	1.00E+03	4.66E-07
Xylenes	7.6	0.003	1.02E+02	2.69E-05
Naphthalene	0.32	0.000	3.02E+00	3.81E-05
Total TPH	2784.01	0.984195459		310.37


The Total TPH Non-carcinogenic CUL = 1 / Σ (Fi / CULi)

Total TPH limit assumes compounds not detected are present at the full reporting limit.

Figures

ATTACHMENT A Friedman & Bruya, Inc. Laboratory Analytical Reports

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

July 10, 2020

Elisabeth Black EMB Consulting, LLC 22725 44th Ave W Mountlake Terrace, WA 98043

Dear Ms Black:

Included are the results from the testing of material submitted on July 6, 2020 from the Parcel 40, F&BI 007054 project. There are 20 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Jamie Stevens, Grant Hainsworth

NAA0710R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on July 6, 2020 by Friedman & Bruya, Inc. from the EMB Consulting, LLC Parcel 40, F&BI 007054 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	EMB Consulting, LLC
007054 -01	AW040720
007054 -02	AE040720
007054 -03	IWB13-040720
007054 -04	IPO040720
007054 -05	INWOFF040720
007054 -06	IE040720
007054 -07	IE100040720

Non-petroleum compounds identified in the air phase hydrocarbon (APH) ranges were subtracted per the MA-APH method.

The APH EC9-12 aliphatics concentration in several samples exceeded the calibration range of the instrument. The data were flagged accordingly.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: AW040720 Client: EMB Consulting, LLC Date Received: 07/06/20 Project: Parcel 40, F&BI 007054Lab ID: Date Collected: 07/04/20 007054-01 Date Analyzed: 07/07/20 Data File: 070711.DMatrix: Instrument: GCMS7 Air Units: ug/m3 Operator: MS/BAT

% Lower Upper Surrogates: Recovery: Limit: Limit: 4-Bromofluorobenzene 90 70 130

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics <30 APH EC9-12 aliphatics <35 APH EC9-10 aromatics <25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: AE040720 Client: EMB Consulting, LLC Date Received: 07/06/20 Project: Parcel 40, F&BI 007054Lab ID: $007054\hbox{-}02\ 1/1.2$ Date Collected: 07/04/20 Date Analyzed: 07/07/20 Data File: 070712.DMatrix: Instrument: GCMS7 Air Units: ug/m3 Operator: MS/BAT

% Lower Upper Surrogates: Recovery: Limit: Limit: 4-Bromofluorobenzene 99 70 130

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics <36 APH EC9-12 aliphatics <42 APH EC9-10 aromatics <30

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Lab ID: Date Collected: 07/04/20 007054-03 Date Analyzed: 07/07/20 Data File: 070713.DMatrix: Instrument: GCMS7 Air Units: ug/m3 Operator: MS/BAT

% Lower Upper Surrogates: Recovery: Limit: Limit: 4-Bromofluorobenzene 87 70 130

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics 240 APH EC9-12 aliphatics 1,500 ve APH EC9-10 aromatics <25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: IPO040720 Client: EMB Consulting, LLC
Date Received: 07/06/20 Project: Parcel 40, F&BI 007054
Date Collected: 07/04/20 Lab ID: 007054-04 1/1.2

Date Analyzed: 07/08/20 Data File: 070714.D

Matrix: Air Instrument: GCMS7

Units: ug/m3 Operator: MS/BAT

% Lower Upper Surrogates: Recovery: Limit: Limit: 4-Bromofluorobenzene 91 70 130

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics 160 APH EC9-12 aliphatics 1,200 ve APH EC9-10 aromatics <30

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: INWOFF040720 Client: EMB Consulting, LLC Date Received: 07/06/20 Project: Parcel 40, F&BI 007054

Lab ID: Date Collected: 07/04/20 007054-05 Date Analyzed: 07/08/20 Data File: 070715.DMatrix: Instrument: GCMS7 Air Units: ug/m3 Operator: MS/BAT

% Lower Upper Surrogates: Recovery: Limit: Limit: 4-Bromofluorobenzene 108 70 130

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics 110 APH EC9-12 aliphatics 1,100 ve APH EC9-10 aromatics <25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: IE040720 Client: EMB Consulting, LLC
Date Received: 07/06/20 Project: Parcel 40, F&BI 007054

Lab ID: Date Collected: 07/04/20 007054-06 Date Analyzed: 07/08/20 Data File: 070716.DMatrix: Instrument: GCMS7 Air Units: ug/m3 Operator: MS/BAT

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics 130 APH EC9-12 aliphatics 2,600 ve APH EC9-10 aromatics <25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: IE100040720 Client: EMB Consulting, LLC Date Received: 07/06/20 Project: Parcel 40, F&BI 007054

Lab ID: 007054-07 Date Collected: 07/04/20 Date Analyzed: 07/08/20 Data File: 070717.DMatrix: Instrument: GCMS7 Air Units: ug/m3 Operator: MS/BAT

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics 130 APH EC9-12 aliphatics 2,700 ve APH EC9-10 aromatics <25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: Method Blank Client: EMB Consulting, LLC
Date Received: Not Applicable Project: Parcel 40, F&BI 007054
Date Collected: Not Applicable Lab ID: 00-1504 mb
Date Applywed: 07/07/20

Date Collected: Not Applicable Lab ID: 00-1504 m
Date Analyzed: 07/07/20 Data File: 070710.D
Matrix: Air Instrument: GCMS7
Units: ug/m3 Operator: MS/BAT

% Lower Upper Surrogates: Recovery: Limit: Limit: 4-Bromofluorobenzene 90 70 130

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics <30 APH EC9-12 aliphatics <35 APH EC9-10 aromatics <25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID:	AW040720	Client:	EMB Consulting, LLC
Date Received:	07/06/20	Project:	Parcel 40, F&BI 007054
Date Collected:	07/04/25	Lab ID:	007054-01
Date Analyzed:	07/07/20	Data File:	070711.D
Matrix:	Air	Instrument:	GCMS7

Operator:

MS/BAT

	%	Lower	Upper
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	91	70	130

	Concentra		
Compounds:	ug/m3	ppbv	
D	.0.00	.0.1	
Benzene	< 0.32	< 0.1	
Toluene	<19	<5	
Ethylbenzene	< 0.43	< 0.1	
m,p-Xylene	< 0.87	< 0.2	
o-Xylene	< 0.43	< 0.1	
Naphthalene	0.16	0.031	

ug/m3

Units:

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID:	AE040720	Client:	EMB Consulting, LLC
Date Received:	07/06/20	Project:	Parcel 40, F&BI 007054
Date Collected:	07/04/25	Lab ID:	007054-02 1/1.2
Date Analyzed:	07/07/20	Data File:	070712.D
Matrix:	Air	Instrument:	GCMS7
Units:	ug/m3	Operator:	MS/BAT

	%	Lower	$_{ m Upper}$
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	101	70	130

Compounds:	Concent ug/m3	ration ppbv
Benzene	< 0.38	< 0.12
Toluene	<23	<6
Ethylbenzene	< 0.52	< 0.12
m,p-Xylene	<1	< 0.24
o-Xylene	< 0.52	< 0.12
Naphthalene	0.12 j	0.023 j

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID:	IWB13-040720	Client:	EMB Consulting, LLC
Date Received:	07/06/20	Project:	Parcel 40, F&BI 007054
Date Collected:	07/04/25	Lab ID:	007054-03

	%	Lower	$_{ m Upper}$
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	88	70	130

	Concentration	
Compounds:	ug/m3	ppbv
Benzene	0.58	0.18
Toluene	39	10
Ethylbenzene	14	3.3
m,p-Xylene	63	14
o-Xylene	19	4.3
Naphthalene	0.39	0.074

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID:	IPO040720	Client:	EMB Consulting, LLC
Date Received:	07/06/20	Project:	Parcel 40, F&BI 007054
Date Collected:	07/04/25	Lab ID:	007054-04 1/1.2
Date Analyzed:	07/08/20	Data File:	070714.D
Matrix:	Air	Instrument:	GCMS7
Units:	ug/m3	Operator:	MS/BAT

	%	Lower	$_{ m Upper}$
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	92	70	130
	~ .	. •	

	Concentration	
Compounds:	ug/m3	ppbv
Benzene	0.74	0.23
Toluene	<23	<6
Ethylbenzene	6.3	1.4
m,p-Xylene	30	6.9
o-Xylene	9.8	2.3
Naphthalene	0.36	0.068

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID:	INWOFF040720	Client:	EMB Consulting, LLC
Date Received:	07/06/20	Project:	Parcel 40, F&BI 007054
Date Collected:	07/04/25	Lab ID:	007054-05
Date Analyzed:	07/08/20	Data File:	070715.D
M - 4 :	A :	T	COMOR

Date Analyzed: 07/08/20 Data File: 070715. Instrument: GCMS7 Units: ug/m3 Operator: MS/BAT

	%	Lower	$_{ m Upper}$
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	109	70	130

	Concentration	
Compounds:	ug/m3	ppbv
Benzene	0.51	0.16
Toluene	<19	<5
Ethylbenzene	5.1	1.2
m,p-Xylene	25	5.7
o-Xylene	8.3	1.9
Naphthalene	0.34	0.064

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID:	IE040720	Client:	EMB Consulting, LLC
Date Received:	07/06/20	Project:	Parcel 40, F&BI 007054
Date Collected:	07/04/25	Lab ID:	007054-06
Date Analyzed:	07/08/20	Data File:	070716.D
Matrix:	Air	Instrument:	GCMS7
Units:	ug/m3	Operator:	MS/BAT

	%	Lower	$_{ m Upper}$
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	102	70	130
	Concent	ration	
Compounds:	ug/m3	ppbv	

Compounds:	ug/m3	ppbv
Benzene	0.79	0.25
Toluene	<19	<5
Ethylbenzene	1.3	0.30
m,p-Xylene	5.5	1.3
o-Xylene	2.1	0.47
Naphthalene	0.32	0.061

ENVIRONMENTAL CHEMISTS

Operator:

MS/BAT

Analysis For Volatile Compounds By Method TO-15

Client Sample ID:	IE100040720	Client:	EMB Consulting, LLC
Date Received:	07/06/20	Project:	Parcel 40, F&BI 007054
Date Collected:	07/04/25	Lab ID:	007054-07
Date Analyzed:	07/08/20	Data File:	070717.D
Matrix:	Air	Instrument:	GCMS7

	%	Lower	Upper
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	102	70	130

	Concentration			
Compounds:	ug/m3	ppbv		
D		0.04		
Benzene	0.78	0.24		
Toluene	<19	<5		
Ethylbenzene	1.3	0.29		
m,p-Xylene	5.3	1.2		
o-Xylene	1.7	0.39		
Naphthalene	0.36	0.068		

ug/m3

Units:

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID:	Method Blank	Client:	EMB Consulting, LLC
Date Received:	Not Applicable	Project:	Parcel 40, F&BI 007054
Date Collected:	Not Applicable	Lab ID:	00-1504 mb
D - 4 - A 1 1.	07/07/00	D-4- E:1	070710 D

Date Collected: Not Applicable Lab ID: 00-1504 mt
Date Analyzed: 07/07/20 Data File: 070710.D

Matrix: Air Instrument: GCMS7
Units: ug/m3 Operator: MS/BAT

	%	Lower	$_{ m Upper}$
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	91	70	130

	Concen	tration
Compounds:	ug/m3	ppbv
_		
Benzene	< 0.32	< 0.1
Toluene	<19	<5
Ethylbenzene	< 0.43	< 0.1
m,p-Xylene	< 0.87	< 0.2
o-Xylene	< 0.43	< 0.1
Naphthalene	<0.057 j	<0.011 j

ENVIRONMENTAL CHEMISTS

Date of Report: 07/10/20 Date Received: 07/06/20

Project: Parcel 40, F&BI 007054

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD MA-APH

Laboratory Code: 007060-02 1/8.3 (Duplicate)

	Reporting	Sample	Duplicate	RPD	
Analyte	Units	Result	Result	(Limit 30)	
APH EC5-8 aliphatics	ug/m3	<250	<250	nm	
APH EC9-12 aliphatics	ug/m3	380	350	8	
APH EC9-10 aromatics	ug/m3	<210	<210	nm	

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
APH EC5-8 aliphatics	ug/m3	67	81	70-130
APH EC9-12 aliphatics	ug/m3	67	109	70-130
APH EC9-10 aromatics	ug/m3	67	107	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 07/10/20 Date Received: 07/06/20

Project: Parcel 40, F&BI 007054

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 007060-02 1/8.3 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Benzene	ug/m3	< 2.7	< 2.7	nm
Toluene	ug/m3	<160	<160	nm
Ethylbenzene	ug/m3	<3.6	<3.6	nm
m,p-Xylene	ug/m3	<7.2	<7.2	nm
o-Xylene	ug/m3	<3.6	<3.6	nm
Naphthalene	ug/m3	<2.2	<2.2	nm

Laboratory Code: Laboratory Control Sample

	Percent				
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
Benzene	ug/m3	43	87	70-130	
Toluene	ug/m3	51	96	70-130	
Ethylbenzene	ug/m3	59	86	70-130	
m,p-Xylene	ug/m3	120	92	70-130	
o-Xylene	ug/m3	59	89	70-130	
Naphthalene	ug/m3	71	83	70-130	

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

20too

Report To Elisabeth Black

Company EMB Consulting. Address 22725 . 44 th Ave W

City, State, ZIP Mountlake Terrace, WA

SAMPLE INFORMATION Phone 206-915-2395 Email emblack consulto co: Jamie Steurs

SAMPLERS (signature)
ME

rage#

TURNAROUND TIME

SAMPLE DISPOSAL

NOTES: SAMPL PROJECT NAME & ADDRESS Paral 40 Crete INVOICE TO PO# □ Archive (Fee may apply) □ Default: Clean after 3 days O RUSH_ Rush charges authorized by: Standard

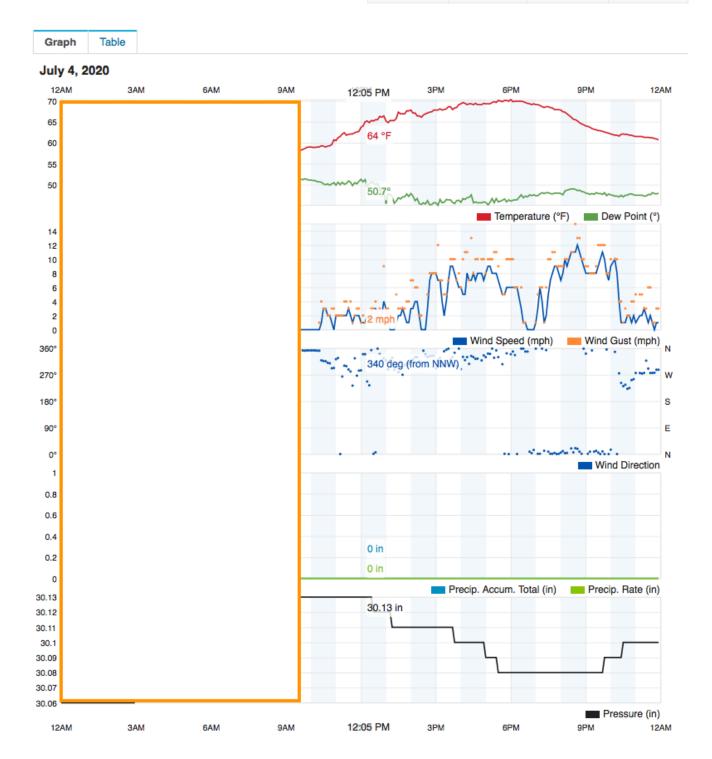
		IEIPO PHOT 20 07 35338 05050	TE0461276	I NWOFFETENS 21442	T LO OH \$ 12 K	17	HE ØHØ72Ø	\	ロンタチョンス	Sample Name				
		40	06	02	100	20	02	101	•	Lab				
		35338	18577	21442	04 20549	35331	1856105348		20505	Canister ID				
		05750	0 6602	21840	0 5375	74550	05348		SA AC	Cont.	Flow			
IA / SG		IA) SG	06 18577 06602 (TA)1 SG	07844 (IA) / SG	(A) / SG	(IA) / SG	(A) / sc	(LA) / SG)	SG=Soil Gas (Circle One)	Level: IA=Indoor Air	Reporting		
		7/4.5 288 10:37 776	7/4.5 29.75 10:37 8.510:37	7/4.5 >300 10:31 8.	7/4.5 300 10.23 10.75	7/4.5 730.0 10:13 9.7	7/4.5 30.0 10:04 10	65:4 51.62 5.41,	١ .	Date Sampled				
		288	29.75	>30.v	S. C.	750.0	\$ 0.0	24.75		Vac.	Initial			
		16:31	16:37	16:01	65:03	61:41	40:01	6.5.4	•		Field			
			5.8	A.9	20.01	9.75	a. 03	8.5	1	Vac.	턴			
		ō:35	16:01	00 (0:5)	10:23	11:13	10:04	45.4		Final Final Time				
	-	8 (8	\otimes					_	TO1	5 Full	Scan	ANALYSIS REQUESTED	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
-	+	21	<u></u>	<u> </u>	(×)	\otimes	\otimes	8	+		15 BT		TSX7	7
	15	×	X	×	X	\times	×	X	+	ТО	15 cV	OCs	- REC	2]]
									\dagger		APH Heliun		QUES QUES	
									\dagger		renun	<u> </u>		
							7/6/20 ME	(Sone EB/GH	Notes					

FORMS\COC\COCTO-15.DOC Fax (206) 283-5044 Ph. (206) 285-8282 Seattle, WA 98119-3012 16th Avenue V Friedman & Bruya,

	**		,	-2029		West	1) 31 00-	a. Inc
	Received by:	Kelinguished by:	100mm	-2029 Received by	で、ちゃく	Relinquished by:	TUO LEVIDIO	
			Michael Eden		としょうとする 大一・ノマ アブス		PRINT NAME	
Samples received at 20 oC			The	SS-11 Pahali, Ank Ine un Cliss	ツブはこれてい	COMEANI	COMBANT	
at 21		1/8/20	1/1/02	Canal.	120	DATE		
င္ပံ		*	`	11:55		TIME		

ATTACHMENT B Weather Data Tacoma, Washington July 4 to 5, 2020

Weather History for KWATACOM280

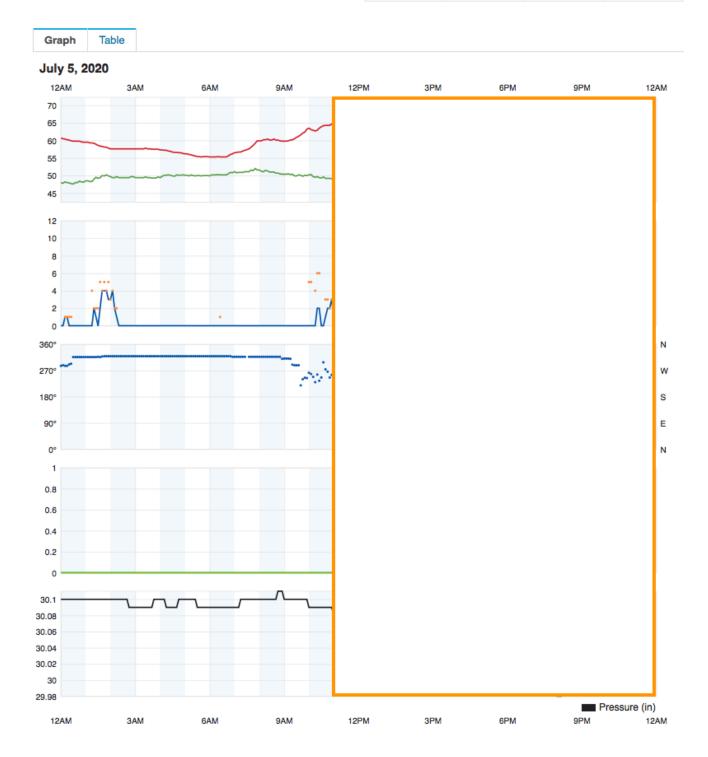


July 4, 2020

	High	Low	Average
Temperature	70.3 °F	53.8 °F	61.5 °F
Dew Point	51.8 °F	45.1 °F	49.0 °F
Humidity	89 %	41 %	66 %
Precipitation	0.00 in		

	High	Low	Average
Wind Speed	12.0 mph	0.0 mph	2.7 mph
Wind Gust	15.0 mph		3.8 mph
Wind Direction			NNW
Pressure	30.13 in	30.06 in	

View



Weather History for KWATACOM280

	High	Low	Average
Temperature	72.3 °F	55.3 °F	64.1 °F
Dew Point	52.0 °F	42.4 °F	48.3 °F
Humidity	83 %	37 %	58 %
Precipitation	0.00 in		

	High	Low	Average
Wind Speed	11.0 mph	0.0 mph	2.6 mph
Wind Gust	12.0 mph		3.5 mph
Wind Direction			NW
Pressure	30.11 in	29.98 in	

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

November 4, 2020

Grant Hainsworth, Project Manager Crete Consulting 108 S. Washington St., Suite 300 Seattle, WA 98104

Dear Mr Hainsworth:

Included are the results from the testing of material submitted on October 28, 2020 from the Port of Tacoma Parcel 40, F&BI 010494 project. There are 10 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Jamie Stevens CTC1104R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on October 28, 2020 by Friedman & Bruya, Inc. from the Crete Consulting Port of Tacoma Parcel 40, F&BI 010494 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID C	Crete	Consulting
-----------------	-------	------------

010494 -01 SSV-Parts 010494 -02 SSV-E Bay

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: SSV-Parts Client: Crete Consulting

Date Received: 10/28/20 Project: Port of Tacoma Parcel 40

10/27/20 Lab ID: Date Collected: 010494-01 1/3.2 Date Analyzed: 10/30/20 Data File: 102927.DMatrix: Instrument: GCMS7 Air Units: ug/m3 Operator: bat

% Lower Upper s: Recovery: Limit: Limit:

Surrogates: Recovery: Limit: Limit: 4-Bromofluorobenzene 104 70 130

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics <130 APH EC9-12 aliphatics 230 APH EC9-10 aromatics <80

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: SSV-E Bay Client: Crete Consulting

Date Received: 10/28/20 Project: Port of Tacoma Parcel 40

10/27/20 Lab ID: Date Collected: 010494-02 1/8.2 Date Analyzed: 10/30/20 Data File: 102929.DMatrix: Instrument: GCMS7 Air Units: ug/m3 Operator: bat

% Lower Upper Surrogates: Recovery: Limit: Limit:

4-Bromofluorobenzene 86 70 130

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics 1,900 APH EC9-12 aliphatics <410 APH EC9-10 aromatics <200

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: Method Blank Client: Crete Consulting

Date Received: Not Applicable Project: Port of Tacoma Parcel 40

Not Applicable Lab ID: Date Collected: $00-2642~\mathrm{MB}$ Date Analyzed: 10/29/20 Data File: 102911.DMatrix: Instrument: GCMS7 Air Units: ug/m3 Operator: bat

% Lower Upper Surrogates: Recovery: Limit: Limit:

4-Bromofluorobenzene 97 70 130

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics <40 APH EC9-12 aliphatics < 50 APH EC9-10 aromatics <25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID:	SSV-Parts	Client:	Crete Consulting
Date Received:	10/28/20	Project:	Port of Tacoma Parcel 40
Date Collected:	10/27/20	Lab ID:	010494-01 1/3.2
Date Analyzed:	10/30/20	Data File:	102927.D
Matrix:	Air	Instrument:	GCMS7
Units:	ug/m3	Operator:	bat

Surrogates: 4-Bromofluorobenzene	Recovery: 106	Lower Limit: 70	Upper Limit: 130
Compounds:	Concenta ug/m3	ration ppbv	

< 0.32 Benzene <1 Toluene <60 <16 Ethylbenzene < 0.32 <1.4 m,p-Xylene <2.8 < 0.64 o-Xylene < 0.32 <1.4 Naphthalene < 0.84 < 0.16

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID:	SSV-E Bay	Client:	Crete Consulting
Date Received:	10/28/20	Project:	Port of Tacoma Parcel 40
Date Collected:	10/27/20	Lab ID:	010494-02 1/8.2
Date Analyzed:	10/30/20	Data File:	102929.D
Matrix:	Air	Instrument:	GCMS7
Units:	ug/m3	Operator:	bat

	%	Lower	Upper
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	88	70	130
	Concent	ration	

Concent	ration
ug/m3	ppbv
<2.6	< 0.82
<150	<41
<3.6	< 0.82
<7.1	<1.6
<3.6	< 0.82
< 2.1	< 0.41
	ug/m3 <2.6 <150 <3.6 <7.1 <3.6

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID:	Method Blank	Client:	Crete Consulting
Date Received:	Not Applicable	Project:	Port of Tacoma Parcel 40
Date Collected:	Not Applicable	Lab ID:	$00-2642~\mathrm{MB}$
Date Analyzed:	10/29/20	Data File:	102911.D
Matrix:	Air	Instrument:	GCMS7

Operator:

bat

	%	Lower	Upper
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	99	70	130

	Concent	ration
Compounds:	ug/m3	ppbv
_		
Benzene	< 0.32	< 0.1
Toluene	<19	<5
Ethylbenzene	< 0.43	< 0.1
m,p-Xylene	< 0.87	< 0.2
o-Xylene	< 0.43	< 0.1
Naphthalene	< 0.26	< 0.05

ug/m3

Units:

ENVIRONMENTAL CHEMISTS

Date of Report: 11/04/20 Date Received: 10/28/20

Project: Port of Tacoma Parcel 40, F&BI 010494

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD MA-APH

Laboratory Code: 010494-01 1/3.2 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
APH EC5-8 aliphatics	ug/m3	<130	<130	nm
APH EC9-12 aliphatics	ug/m3	230	230	0
APH EC9-10 aromatics	ug/m3	<80	<80	nm

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
APH EC5-8 aliphatics	ug/m3	67	72	70-130
APH EC9-12 aliphatics	ug/m3	67	91	70-130
APH EC9-10 aromatics	ug/m3	67	104	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 11/04/20 Date Received: 10/28/20

Project: Port of Tacoma Parcel 40, F&BI 010494

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 010494-01 1/3.2 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Benzene	ug/m3	<1	<1	nm
Toluene	ug/m3	<60	<60	nm
Ethylbenzene	ug/m3	<1.4	<1.4	nm
m,p-Xylene	ug/m3	< 2.8	< 2.8	nm
o-Xylene	ug/m3	<1.4	<1.4	nm
Naphthalene	ug/m3	< 0.84	< 0.84	nm

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/m3	43	94	70-130
Toluene	ug/m3	51	107	70-130
Ethylbenzene	ug/m3	59	107	70-130
m,p-Xylene	ug/m3	120	103	70-130
o-Xylene	ug/m3	59	101	70-130
Naphthalene	ug/m3	71	98	70-130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

FORMS\COC\COCTO-15.DOC Fax (206) 283-5044 Ph. (206) 285-8282 Seattle, WA 98119-2029 3012 16th Avenue West Friedman & Bruya, Inc. SAMPLE INFORMATION SSV-EBAN Phone 253-797 6325 mail great harrs in the Company CRETE SSV-larts Address 108 S. Washing h_ St Report To Grant Hair Smith Hehalo Sample Name Received by: Relinquished by: Recorded by UM Relanguished by 3 9 e F 3312 crete consultry. 2435 Canister #300 SIGNATURE 98104 & Tame 385 255 Cont. Flow IA=Indoor Air SG=Soil Gas IA / IA / IA / IA / (Circle One) IA /(SG) IA / SQ IA / SG IA / SG Reporting Level: SAMPLE CHAIN OF CUSTODY M6 Ç Ç SG SAMPLERS (signature) SG SS NOTES PROJECT NAME & ADDRESS 5 H.H.1 08 12/2/01 +05 0x/+2/01 Sampled ("Hg) Ann Webber Bruga want Hainson Date Initial PRINT NAME Mary H Time Initial Field ("Hg) Final 1653 など Time Field Final INVOICE TO ANALYSIS REQUESTED 10-28-20 TO15 Full Scan #Og# COMPANY Samples received at TO15 BTEXN TO15 cVOCs APH Standard D RUSH ☐ Archive (Fee may apply) □ Default: Clean after 3 days Rush charges authorized by: Helium TURNAROUND TIME Page# SAMPLE DISPOSAL 16/28/20 DATE Notes ദ് TIME

Appendix C Borehole Logs and Survey Data

CRETE Consulting, Inc. 16300 Christensen Road, Suite 214

Seattle, WA 98188

WELL LOG

MW-10 BORING/WELL ID:

20-ft bgs INSTALLED DEPTH:

				1				
	PRO	JECT IN	FORMATION		DRIL	LING IN	IFORMATION	
PROJI	ECT:		Parcel 40	DRILLIN	G CO.:		Holocene Drilling	g/Eric Swanson
SITE L	OCATION	:	1675 Lincoln Avenue	DRILLING METHOD:			Hollow Stem Aug	jer
			Tacoma, WA	EQUIPM	ENT TYPE:		Diedrich D-50 Tu	rbo
LOGG	ED BY:		Rusty Jones	SAMPLII	NG METHO	D:	4.25" ID Hollow S	tem Auger
PROJI	ECT MANA	GER:	G. Hainsworth				With 1.5-ft Split-s	Spoons
DATES	S DRILLED)/INSTAL	LED: 10/4/2020	DRILLED	DEPTH:		20-ft bgs, Cored	to 21.5-ft bgs
LATIT	UDE:		48.9257° N	INITIAL	WATER DE	PTH:	12.5-ft bgs	
LONG	ITUDE:		122.8127° W	SCREEN	IED INTERV	/AL:	7 to 17 ft bgs	
DEPTI	SOIL LOG	USCS	DESCRIPTION	SAMPLE ID	SAMPLE DEPTH (ft bgs)	PID (ppm)	WELL CONSTRUCT.	WELL DESC.
0			GRAVELLY SAND, fine to coarse-grained, poorly-sorted, subangular to subround, up to 1.5-inch gravel, slightly moist ot moist.	Split- Spoon	0 - 1.5 ft			Flush-mount ⁰ Wellhead Cover
5-		SW		Split- Spoon	2.5 - 4 ft	4.8		Cement Collar 2-inch PVC Riser
-			SILTY SAND, fine to coarse-grained,	Split- Spoon	5 - 6.5 ft	6.4		Bentonite Sea
-		SM	black. At 7.5-ft bgs: Abundant GRAVEL, slightly moist.	Split-	7.5 - 9 ft	7.1		
-		SP	SAND, fine to medium-grained, well-sorted, slightly moist, dark brown.	Spoon	7.0 010			
10 –			SILT, firm, moist to wet, dark brown to black, very faint hydrocarbon odor. At 12.5-ft bgs: Wet to saturated	Split- Spoon	10 - 11.5 ft	6.9		10 Filter Pack 12/20 Silica
		ML		Split- Spoon	12.5 - 14 ft	7.0		Sand 2-inch PVC Screen
15 –			At 15-ft bgs: Some seams of black fine to medium-grained SAND, black, little to no hydrocarbon odor.	Split- Spoon	15 - 16.5 ft	5.3		0.010-Slotted 15
		SP	SAND, minor SILT, fine to medium-grained, loose to medium consistency, wet, black, little to no hydrocarbon odor.	Split- Spoon	17.5 - 19 ft	5.9		
20 –				Split- Spoon	20 - 21.5 ft			20

NOTES: Installed adjacent to SB-08

Lithology logged from split spoon core samples.

CRETE Consulting, Inc.

16300 Christensen Road, Suite 214 Seattle, WA 98188

WELL LOG

MW-11 BORING/WELL ID:

20-ft bgs INSTALLED DEPTH:

	PRO	JECT IN	FORMATION		DRIL	LING IN	IFORMATION	
PROJE	ECT:		Parcel 40	DRILLIN	G CO.:		Holocene Drilling	/Eric Swanson
SITE L	OCATION	:	1675 Lincoln Avenue	DRILLING METHOD:			Hollow Stem Aug	er
			Tacoma, WA	EQUIPM	ENT TYPE:		Diedrich D-50 Tu	rbo
LOGG	ED BY:		Rusty Jones	SAMPLII	NG METHO	D:	4.25" ID Hollow S	tem Auger
PROJE	ECT MANA	GER:	G. Hainsworth				With 1.5-ft Split-S	Spoons
DATES	S DRILLED)/INSTAL	LED: 10/4/2020	DRILLE	DEPTH:		20-ft bgs, Cored	to 21.5-ft bgs
LATITU	JDE:		48.9252° N	INITIAL	WATER DE	PTH:	12.5-ft bgs	
LONG	ITUDE:		122.8117° W	SCREEN	IED INTER	/AL:	5 to 15 ft bgs	
DEPTH	SOIL LOG	USCS	DESCRIPTION	SAMPLE ID	SAMPLE DEPTH (ft bgs)	PID (ppm)	WELL CONSTRUCT.	WELL DESC.
0			GRAVELLY SAND, medium to coarse-grained, poorly-sorted, subangular, slightly moist ot moist, dark brown.	Split- Spoon	0 - 1.5 ft			Flush-mount ⁰ Wellhead Cover
				Split- Spoon	2.5 - 4 ft	NM		Cement Collar 2-inch PVC Riser
5-		GW		Split- Spoon	5 - 6.5 ft	0.9		`Bentonite Se&l-
				Split- Spoon	7.5 - 9 ft	2.6		Filter Pack
10 –			CLAYEY SILT, native seams varying from dark brown to dark grays, moist to wet. At 12.5 ft bgs: SILT, decreasing CLAY	Split- Spoon	10 - 11.5 ft	2.6		Sand 10 - 2-inch PVC Screen
		SM	fines, minor fine to medium-grained SAND pockets, wet, black. At 15 ft bgs: SILT with fine-grained	Split- Spoon	12.5 - 14 ft	2.6		0.010-Slotted
15 -			SAND, wet, dark gray to black. SAND, medium to coarse-grained,	Split- Spoon	15 - 16.5 ft	3.0		15 -
		SP	subangular to subround, black, wet.	Split- Spoon	17.5 - 19 ft	2.7		
20 –				Split- Spoon	20 - 21.5 ft	2.8		20 -

NOTES: Installed adjacent to Matson warehouse.
Lithology logged from split spoon core samples.

Boring Log

Page 1 of 1

LOCATION/BORING ID:

		PROJE	CT I	NFORMATION	D	RILLING INFORMA	TION		
SI	ROJEC FE NA			Port of Tacoma Parcel 40 1675 Lincoln Avenue Tacoma, WA	DRILLING COMPAN DRILLING METHOD: BORING DEPTH:	Direct Push 25 ft bgs		-	an
1		MBER:			BORING DIAMETER SOIL SCREENING:	2.25-inch MiniRAE F	OID.		
		CT MANAGER:		G. Hainsworth, P.E.	PLUGGING METHOI				
		D BY:) DRILLED:		R. Jones 6/12/2020			LATITU	DE .	LONGITUDE
1		TIME: 08:55		END TIME: 10:00	GROUND ELEV:	NM	48.926		122.8114
DE	MARI	KS: Fast end	l of R	Building 600.	ELEV. METHOD:	NM		· VITIAL	122.0111
				unting 600.	COOR. METHOD:	Lat./Long.		VATER LEV	EL: 13.71 ft bgs
DEP	TH	LITHOLOGY	nscs	SOIL DESCRIPTION		SAMPLE ID	DEPTH (ft bgs)	PID (ppm)	COMMENTS
0	Г			ASPHALT			1		
				FILL: GRAVELLY SAND, poorly-sorted, fine to co round gravel, dark tan to brown, slightly moist.	arse-grained, subround to	_	0.8-2	0.9	
	-		sw	At 3 ft bgs: Mostly gray.			3-4	2.0	
_		•,•,•,•	SP	SAND, fine to medium-grained, dark gray to black	x, slightly moist.		4.5-5	65.0	
5-			J.	SAND, fine to coarse -grained, dark gray to black, moderate to strong hydrocarbon odors.	20 200 20		5.5-6.5	162.5	
,			SP				7.5-8.5	187.7	
				At 9.5 ft bgs: Moist to wet.		SB-01-09	9-10	189.3	
10 -	-			At 11-11.5 ft bgs: GRAVELLY SAND layer.			10-11	131.1	Temporary well
1.	1	====		SILTY SAND, fine to medium-grained, dark gray t strong hydrocarbon.	o black, wet, moderate to		10.10	95.6	screen installed (11-15 ft bgs).
	_ v		SM	ottong tryatocarbon.		SB-01-0620	12-13	90.0	(11-10 it bgs).
15 -	_	######################################					14-15	70.1	
20 -				Lithology not logged after 15 ft bgs.					
	-						-		Temporary well
25 -	-					SB-01D-0620			screen installed (21-25 ft bgs).

Boring Log

Page 1 of 1

LOCATION/BORING ID:

	,					
	NFORMATION	[ORILLING INFORMA	TION		
PROJECT: SITE NAME: SITE LOCATION: JOB NUMBER: PROJECT MANAGER: LOGGED BY:	Port of Tacoma Parcel 40 1675 Lincoln Avenue Tacoma, WA G. Hainsworth, P.E. R. Jones	DRILLING COMPAIDRILLING METHODER BORING DEPTH: BORING DIAMETED SOIL SCREENING: PLUGGING METHO	Direct Push 15 ft bgs R: 2.25-inch MiniRAE H	Technol	-	an
DATE(S) DRILLED:	6/12/2020	GROUND ELEV:	NIM	LATITU	DE	LONGITUDE
START TIME: 10:05	END TIME: 10:55	ELEV. METHOD:	NM NM	48.9265	5	122.8114
	cuilding 600 near GEI-MW1.	COOR. METHOD:	Lat./Long.		NITIAL VATER LEV	EL: 9.97 ft bgs
DEPTH LITHOLOGY SS	SOIL DESCRIPTION		SAMPLE ID	DEPTH (ft bgs)	PID (ppm)	COMMENTS
5— sp	ASPHALT and GRAVEL, some medium to coarse dry. FILL: GRAVELLY SAND, poorly-sorted, fine to co gray, slightly moist. SAND, medium-grained, minor coarse-grained, sul round GRAVEL (<1-inch observed), dark gray to be moist. At 4.5 ft bgs: Faint hydrocarbon odor. At 5 ft bgs: Minor SILT, some brown SAND, moist	arse-grained, brown to bround to round, trace black, slightly moist to		1-2 3.5-5 6-7 7.5-8.5	6.0 33.8 17.1	
10 — 🗵	SILTY SAND, fine to medium-grained, dark gray t Increasing SILT with depth. At 9.5 ft bgs: Wet, hydrocarbon sheen. At 11 ft bgs: Wet to saturated, hydrocarbon sheer odors.		SB-02-09.5 SB-02-0620	9.5-10 10.5-11 12-13	144.7 68.8 19.0	

Boring Log

Page 1 of 1

LOCATION/BORING ID:

	PROJE	CT I	NFORMATION	D	RILLING INFORMA	TION		
JOB NU	AME: DCATION: JMBER: CT MANAGER	:	Port of Tacoma Parcel 40 1675 Lincoln Avenue Tacoma, WA G. Hainsworth, P.E. R. Jones	DRILLING COMPAN' DRILLING METHOD: BORING DEPTH: BORING DIAMETER SOIL SCREENING: PLUGGING METHOI	Direct Pus 15 ft bgs 2.25-inch MiniRAE l	h Techno	_	an
DATE(S) DRILLED:		6/12/2020	GROUND ELEV:	NM	LATITU	DE	LONGITUDE
START	TIME: 11:00		END TIME: 11:50	ELEV. METHOD:	NM	48.9265	5	122.8116
REMAR		ast co	rner of Building 600.	COOR. METHOD:	Lat./Long.		NITIAL VATER LEV	EL: 12.28 ft bgs
DEPTH	LITHOLOGY	nscs	SOIL DESCRIPTION		SAMPLE ID	DEPTH (ft bgs)	PID (ppm)	COMMENTS
0			ASPHALT					
-			FILL: GRAVELLY SAND, poorly-sorted, fine to co round gravel (<1.5-inch observed), tan to brown, s			0.5-1	2.4	
-		SW				2.5-3.5	1.9	
5-			SAND, medium to coarse-grained, black, moist. F At 5 ft bgs: Dark brown to black, slightly moist to hydrocarbon.			4.5-5	78.8	
-						5.5-6.5	175.0	
		SP				7.5-8.5	235.2	
10 +			At 10 ft bgs: Some decomposed ROOTS, dark gr	ay to black, moist to wet,		9.5-10	167.7	
			very strong hydrocarbon odor.		SB-03-10	10-10.5	879.8	
		SM	SILTY SAND, fine to medium-grained, wet to satu hydrocarbon odor.	urated. Strong	SB-03-0620 SB-0310-10	11.5- 12.5	198.0	
15 —	<u> </u>					14.5-15	24.5	

Boring Log

Page 1 of 1

11.60 ft bgs

LOCATION/BORING ID:

SB-04

	PROJECT	INFORMATION
--	---------	-------------

PROJECT: SITE NAME:

Port of Tacoma

Parcel 40

1675 Lincoln Avenue

SITE LOCATION:

Tacoma, WA

JOB NUMBER:

PROJECT MANAGER: G. Hainsworth, P.E.

LOGGED BY: DATE(S) DRILLED: R. Jones 6/12/2020

START TIME: 12:40

END TIME: 13:28

REMARKS: Northeast corner of Building 600.

DRILLING INFORMATION

DRILLING COMPANY: ESN Northwest/Casey Newman

DRILLING METHOD:

Direct Push Technology

BORING DEPTH: BORING DIAMETER: 15 ft bgs 2.25-inch

SOIL SCREENING: PLUGGING METHOD:

MiniRAE PID
Bentonite chips

GROUND ELEV: NM

LATITUDE LONGITUDE 48.9265 122.8117

ELEV. METHOD: NM COOR. METHOD: Lat.

Lat./Long.

____ INITIAL

WATER LEVEL:

DEPTH LITHOLOGY S SOIL DESCRIPTION SAMPLE ID DEPTH PID (fft bgs) (ppm) COMMENTS

0		ASPHALT			
	sw	GRAVELLY SAND, minor SILT, poorly-sorted, fine to coarse-grained, tan to brown, slightly moist to moist.		1-2.5	2.1
5-		SAND, medium to coarse-grained, greenish dark gray, very faint hydrocarbon odor. At 5 ft bgs: Fine to medium-grained, dark gray to black, faint to moderate hydrocarbon odor.		4-5	18.4
-	SP			6-7	37.6
10 +		CLAYEY SANDY SILT , soft, trace decomposed ROOTS, moist to wet, moderate to strong hydrocarbon odors. At 10 ft bgs: Variable SAND and SILT content, very fine to fine-grained,	SB-04-08	8-9	242.4
2	z	dark gray to black, wet to saturated, strong hydrocarbon odor.		10-11	215.4
			SB-04-0620	12-13	51.3
15				14-15	10.9

Boring Log

Page 1 of 1

LOCATION/BORING ID:

14.5-15

30.4

11		10,000	- 0.800A (1.000), - 0.815 (0.00)						
	PROJE	CT II	NFORMATION		DRILLIN	G INFORMA	TION		
JOB NU	AME: DCATION: JMBER: CT MANAGER	:	Port of Tacoma Parcel 40 1675 Lincoln Avenue Tacoma, WA G. Hainsworth, P.E. R. Jones	DRILLING COMPA DRILLING METHO BORING DEPTH: BORING DIAMETE SOIL SCREENING PLUGGING METHO	D: :R: :	ESN North Direct Pusl 15 ft bgs 2.25-inch MiniRAE I Bentonite c	n Technol PID		an
	B) DRILLED:		6/12/2020				LATITUI	DE	LONGITUDE
-	TIME: 13:30		END TIME: 14:20	GROUND ELEV:	NM		48.9264	ı	122.8119
REMAR	RKS: North s	ide of	Building 600.	ELEV. METHOD: COOR. METHOD:	NM Lat./L	ong.		NITIAL /ATER LEV	EL: 12.57 ft bgs
DEPTH	LITHOLOGY	nscs	SOIL DESCRIPTION		SA	AMPLE ID	DEPTH (ft bgs)	PID (ppm)	COMMENTS
0			ASPHALT						
			SAND with GRAVEL, poorly-sorted, very fine to come to round sand and gravel, tan to brown, slightly me At 2 to 2.5 ft bgs: Perched coarse SAND layer, we	oist.			1-2.5	3.2	
5-		SW	At 5 ft bgs: Medium to coarse-grained, SAND, tan odor.	, wet, faint hydrocarbon			4-5 5.5-6.5	3.0	
		SP	SAND, minor to some SILT, fine to medium-graine moderate to strong hydrocarbon odor.	ed, dark gray, moist,			7-8	81.3	
10 +			SANDY SILT, very fine to fine-grained sand, subre gray, strong hydrocarbon odor. At 10 ft bgs: Wet to saturated, strong hydrocarbor sheen.		S	B-05-09.5	9.5-10	134.3	
₩ ₩	- :	ML	At 10.5-11.5 ft bgs: Fine-grained SANDY layer.		s	B-05-0620	11.5 12.5- 13.5	93.4	

Boring Log

Page 1 of 1

LOCATION/BORING ID:

SB-06

PROJECT	INFORM	MOITAN
---------	--------	--------

PROJECT: SITE NAME:

Port of Tacoma

Parcel 40

1675 Lincoln Avenue

SITE LOCATION:

Tacoma, WA

JOB NUMBER:

G. Hainsworth, P.E.

LOGGED BY: DATE(S) DRILLED:

R. Jones 6/12/2020

START TIME: 14:30

PROJECT MANAGER:

END TIME: 15:10

North side of Building 600. REMARKS:

DRILLING INFORMATION

DRILLING COMPANY:

ESN Northwest/Casey Newman

DRILLING METHOD:

Direct Push Technology

BORING DEPTH: BORING DIAMETER:

15 ft bgs 2.25-inch

SOIL SCREENING: MiniRAE PID PLUGGING METHOD:

Bentonite chips

GROUND ELEV: NMELEV. METHOD: NM

LATITUDE 48.9262

122.8122

COOR. METHOD: Lat./Long. INITIAL

WATER LEVEL: 10.30 ft bgs

COMMENTS

LONGITUDE

DEPTH	LITHOLOGY	nscs	SOIL DESCRIPTION	SAMPLE ID	DEPTH (ft bgs)	PID (ppm)	
0			ASPHALT GRAVELLY SAND, poorly-sorted, fine to coarse-grained, mostly subround, gravel up to 1.5-inch observed, tan to brown, slightly moist.		1-2	2.5	
-		sw					
5-		SP	SAND, fine to medium-grained, dark brown to dark gray, slightly moist to moist. At 5 ft bgs: Moderate to strong hydrocarbon odor. At 5.5 to 6.5 ft bgs: Coarse-grained SAND.		5-6	11.0	
			SILTY SAND, dark gray to black, wet, moderate to strong hydrocarbon		7-8	98.9	
10 +			odor.	SB-06-09	9-10	229.1	
_		SM			10.5- 11.5	145.3	
				SB-06-0620	12.5- 13.5	79.4	
15					14-15	89.4	

Boring Log

Page 1 of 1

LOCATION/BORING ID:

PROJECT I	NFORMATION		DRILLING INFORMA	TION		
PROJECT: SITE NAME: SITE LOCATION: JOB NUMBER: PROJECT MANAGER: LOGGED BY:	Port of Tacoma Parcel 40 1675 Lincoln Avenue Tacoma, WA G. Hainsworth, P.E. R. Jones	DRILLING COMPANDRILLING METHOD BORING DEPTH: BORING DIAMETER SOIL SCREENING: PLUGGING METHO	Direct Push 15 ft bgs R: 2.25-inch MiniRAE F	Technol	_	an
DATE(S) DRILLED:	6/12/2020			LATITU	DE	LONGITUDE
START TIME: 15:18	END TIME: 16:08	GROUND ELEV: ELEV. METHOD:	NM NM	48.926		122.8126
	f Building 600.	COOR. METHOD:	Lat./Long.		VITIAL VATER LEV	EL: 10.11 ft bgs
DEPTH LITHOLOGY SS	SOIL DESCRIPTION		SAMPLE ID	DEPTH (ft bgs)	PID (ppm)	COMMENTS
0 T	ASPHALT		_			
	SAND and GRAVEL, poorly-sorted, fine to coarse					
Sw	up to 1.5-inch, tan to brown, slightly moist to mois	t.		1-2.5	2.0	
5-	SAND, medium-grained, loose to medium consist slightly moist to moist, no appreciable hydrocarbo			4-5	4.9	
SP			SB-07-07.5	7.5-8.5	4.2	
10 + 🗷	At 10.5 ft bgs: GRAVELLY SAND, coarse-grained	ł, brown, moist to wet.		9-10	3.7	
SM	SILTY SAND, very fine to fine-grained, black, wet hydrocarbon odors.	to saturated, faint	SB-07-0620	10.5-	2.6	
				13-14	2.5	
15				14-15	2.3	

Boring Log

Page 1 of 1

LOCATION/BORING ID:

	PRO.IF	CTII	NFORMATION		RILLING INFORMA	MOITA		
PROJEC1		.01 11						
SITE NAM SITE LOC JOB NUM	ME: CATION: IBER: T MANAGER:		Port of Tacoma Parcel 40 1675 Lincoln Avenue Tacoma, WA G. Hainsworth, P.E. R. Jones	DRILLING COMPAN DRILLING METHOD BORING DEPTH: BORING DIAMETER SOIL SCREENING: PLUGGING METHO	an			
	DRILLED:		6/12/2020			LATITU	DE	LONGITUDE
START TI	IME: 16:18		END TIME: 18:00	GROUND ELEV: ELEV. METHOD:	NM NM	48.925	7	122.8128
REMARK	S: West en	d of F	Building 600 Area. At GEI-MW10 location.	COOR. METHOD:	Lat./Long.		VITIAL VATER LEV	/EL: 10.35
DEPTH	ITHOLOGY	nscs	SOIL DESCRIPTION		SAMPLE ID	DEPTH (ft bgs)	PID (ppm)	COMMENTS
0			ACDIALT.					
		GW	ASPHALT GRAVEL and SAND, slightly moist to moist.		1			
-			GRAVELLY SAND, fine to coarse-grained, mostly coarse-grained, moist.	medium to		1.5-2.5	2.7	
		sw				15	4.0	
5+			At 5 ft bgs: Wet. At 5.5 to 5.8 ft bgs: GRAVEL.			4-5	1.8	
-			SAND, poorly-sorted, medium to coarse-grained, s	subround, black, moist.		6-7	2.7	
10 + 🗷		SW	At 10.8 ft bgs: Very coarse-grained SAND, subang brown, wet to saturated.	gular to subround, tan to	SB-08-09	9-10	2.8	
			SILTY SAND, well-sorted, very fine to fine-grained	d, black, saturated.		11-12	2.5	Temporary well screen installed
-		SM	At 13.8 ft bgs: Decomposing WOOD.		SB-08-0620			11-15 ft bgs.
15 +	<u> </u>		OANID III II			14-15	2.4	
			SAND, mostly medium to coarse-grained, coarser black with some white and red grains, saturated, v			16-17	2.2	
20+		en l	At 20 ft bgs: Reducing odors.			18.5-20	2.1	
		SP	At 22.5 ft bgs: Minor to some SILT, minor reducing	g odors.				Temporary well screen installed
						21-22	1.8	21-25 ft bgs. Water level at 11.03 ft bgs.
					SB-08D-0620			
$\begin{vmatrix} 25 \end{vmatrix}$						24-25	1.8	

Boring Log

Page 1 of 1

LOCATION/BORING ID:

14.5-15

197.1

- 4	DDO IF	OT INFORMATION			TION		
		CT INFORMATION		ORILLING INFORMA			
JOB NU	AME: OCATION: JMBER: CT MANAGER:	Port of Tacoma Parcel 40 1675 Lincoln Avenue Tacoma, WA G. Hainsworth, P.E. R. Jones	DRILLING COMPANDRILLING METHOD BORING DEPTH: BORING DIAMETER SOIL SCREENING: PLUGGING METHO	Direct Push 15 ft bgs 2.25-inch MiniRAE F	Technol	-	an
	S) DRILLED:	6/12/2020	ODOLIND ELEV	N/A E	LATITU	DE	LONGITUDE
START	TIME: 18:05	END TIME: 18:45	GROUND ELEV: ELEV. METHOD:	NM NM	48.9259)	122.8119
REMAR	RKS: Southsid	e of Building 600, near former GCI-MW3.	COOR. METHOD:	Lat./Long.		VITIAL VATER LEV	EL: 10.46 ft bgs
DEPTH	LITHOLOGY	SOIL DESCRIPTION		SAMPLE ID	DEPTH (ft bgs)	PID (ppm)	COMMENTS
0Τ		ASPHALT					
	•,•,•,•	SAND and GRAVEL, poorly-sorted, fine to coars	se-grained, tan/brown to	-			
5-		SW			1-5	3.0	
-	6,6,6,6 6,6,6,6	SAND, fine to medium-grained, subround, dark of moderate hydrocarbon odor. Increasing SILT with depth.	gray to black, moist, mild to		5-7.5	8.5	
-		SP		SB-09-07.5	7.5-10	295.3	
10 + 😾		At 10 ft bgs: Coarsening downward sequence, d At 10.5 ft bgs: Coarse-grained, gray, wet.	lark brown to black, wet.				
,		SILTY SAND, very fine to fine-grained, dark brown	wn to black, saturated.		10.5- 11.5	228.1	
-		At 12 ft bgs: Hydrocarbon sheen.		SB-09-0620	12-13	225.5	

Boring Log

Page 1 of 1

LOCATION/BORING ID:

17		CONS		TING, INC.	WA 90100				
		PROJE	CTI	NFORMATION		DRILLING INFORMA	TION		
JOB PRO	E LC NU DJE(Port of Tacoma Parcel 40 1675 Lincoln Avenue Tacoma, WA G. Hainsworth, P.E. R. Jones	DRILLING COMPA DRILLING METHO BORING DEPTH: BORING DIAMETE SOIL SCREENING PLUGGING METHO	D: Direct Pusi 25 ft bgs R: 2.25-inch MiniRAE I	h Techno		
) DRILLED:		8/5/2020	ODOLIND ELEV		LATITU	DE	LONGITUDE
STAI	RT	TIME: 07:30		END TIME: 09:15	GROUND ELEV: ELEV. METHOD:	NM NM	48.9255	5	122.8133
REM			COOR. METHOD:	Lat./Long.		VITIAL VATER LEV	/EL: 8.85 ft bgs		
DEPTH	Н	LITHOLOGY	nscs	SOIL DESCRIPTION		SAMPLE ID	DEPTH (ft bgs)	PID (ppm)	COMMENTS
0				ASPHALT					
			sw	GRAVELLY SAND, poorly-sorted, fine to coarse slightly moist. At 1.8 ft bgs: Decreasing GRAVEL, subround to			0.5-1.5	20.3	
				SAND, trace GRAVEL, medium-grained, round to	o subround, tan, moist.		3-4	20.7	
5+			SP			SB-10-05	5-6	21.9	
	ਯ			SILTY SAND, fine-grained, subround, dark brow	n to black, moist.		7-8	17.2	
10 +				At 10 ft bgs: Moist to wet. At 10.7 ft bgs: Fine to medium-grained, dark bro	wn, wet.		9-10	17.7	
-			SM						Temporary well screen installed
-				At 14.3 ft bgs: Decomposed WOOD.		SB-10-0820	12-13	15.0	11-15 ft bgs.
15 +				SAND, minor SILT, mostly medium-grained, sub brown, wet to saturated.	angular to subround, dark		15-16	13.2	
							40.40	45.0	
20 +			SP	At 20 ft bgs: Fine to coarse-grained, coarsening	downward, trace SHELL		18-19	15.6	
				fragments, wet to saturated.			20-22	14.2	Temporary well screen installed
			SM	SILTY SAND, semi-cohesive, fine to medium-gragray, wet.	ained, dark brown to dark	SB-10D-0820	22-23.8	17.2	21-25 ft bgs.
25 1		<u> -:-:-</u>							

Boring Log

Page 1 of 1

LOCATION/BORING ID:

17	Eq. (600 5400 700 540)							
	PROJECT I	NFORMATION		RILLING INFORMA	TION			
JOB NU	AME: OCATION: JMBER: CT MANAGER:	Port of Tacoma Parcel 40 1675 Lincoln Avenue Tacoma, WA G. Hainsworth, P.E. R. Jones	DRILLING COMPANDRILLING METHOD BORING DEPTH: BORING DIAMETER SOIL SCREENING: PLUGGING METHO	Direct Push Technology 15 ft bgs R: 2.25-inch MiniRAE PID				
	S) DRILLED:	8/5/2020	ODOLIND FLEV		LATITU	DE	LONGITUDE	
START	TIME: 09:36	END TIME: 10:25	GROUND ELEV: — ELEV. METHOD:	NM NM	48.925	4	122.8124	
	EMARKS: Southwest of Building 600. PTH THOLOGY SOIL DESCRIPTION		COOR. METHOD:	Lat./Long.	\ \/	NITIAL VATER LEV	EL: 9.6 ft bgs	
DEPTH	LITHOLOGY SS	SOIL DESCRIPTION		SAMPLE ID	DEPTH (ft bgs)	PID (ppm)	COMMENTS	
0⊤		ASPHALT						
	evezeze gw	FILL: SANDY GRAVEL, poorly-sorted, fine to ve	ry coarse-grained, dry.	1				
		SAND, mostly medium to coarse-grained, trace t subround, greenish gray, slightly moist.	to minor small GRAVEL,					
	sw				2-3	18.5		
5+		At 5 ft bgs: Moist, faint hydrocarbon odor.			5.5-6.5	20.5		
		SILTY SAND, fine to medium-grained, well-sorte moist, very faint hydrocarbon odor.	d, dark tan to brown,		7.5-8.5	71.8		
0 + =				SB-11-09	9-10	486.8		
	SM				11-12	366.6		
				SB-11-0820				
_					14-15	591.0		

Boring Log

Page 1 of 1

LOCATION/BORING ID:

			VE 0 0 1 1 0 1 1		DULING INFORM	ATION		
		CTII	NFORMATION	Ľ	RILLING INFORM	ATION		
JOB N	AME: OCATION: JMBER: CT MANAGER:		Port of Tacoma Parcel 40 1675 Lincoln Avenue Tacoma, WA G. Hainsworth, P.E. R. Jones	DRILLING COMPANY: DRILLING METHOD: BORING DEPTH: BORING DIAMETER: SOIL SCREENING: PLUGGING METHOD: BESN Northwest/Don Harden Direct Push Technology 25 ft bgs 8.2.25-inch MiniRAE PID Bentonite chips				
	S) DRILLED:		8/5/2020			LATITUI	DE	LONGITUDE
START	TIME: 10:33		END TIME: 12:40	GROUND ELEV: ELEV. METHOD:	NM NM	48.9254	ļ	122.8114
REMAF		Buil	ding 600.	COOR. METHOD:	Lat./Long.		NITIAL /ATER LEV	EL: 9.4 ft bgs
DEPTH	LITHOLOGY	nscs	SOIL DESCRIPTION		SAMPLE ID	DEPTH (ft bgs)	PID (ppm)	COMMENTS
					-1			
0		SW	ASPHALT FILL: GRAVELLY SAND, poorly-sorted, fine to co tan to brown, dry. SAND with minor GRAVEL, medium to very coars			1-2	19.8	
-			slightly moist.	e-graineu, uark gray,		3.5-4	21.8	
5+		SW	At 5 ft bgs: SAND, medium-grained, trace small G slightly moist to moist.	SRAVEL, dark gray,		4 5-5 6-7	23.2	
			CANDY CILT for any local deal, become to accomp			8-9	9.8	
10 +			SANDY SILT, very fine-grained, dark brown to gra At 10 ft bgs: SILTY SAND, coarsening downward	sequence.				
		SM			SB-12-10	10-11	56.4	Temporary well screen installed
_			At 13.5 ft bgs: Fine to very fine-grained, dark brow	vn, wet.	SB-12-0820	12-13	21.9	11-15 ft bgs.
15 +						14-15	20.3	
			SAND, medium to coarse-grained, dark brown, we	et.		16-17	14.2	
		SP						
20 +			At 19 ft bgs: Trace SHELL fragments.			19-20	16.3	
-			SILTY SAND, medium-grained, subround to round	d, very dark brown, wet.		20-22.5	18.8	Temporary well screen installed
		SP	At 24-25 ft bgs: Minor brittle SHELL fragments.		SB-12D-0820			21-25 ft bgs.
25						24-25	20.9	

Boring Log

Page 1 of 1

LOCATION/BORING ID:

	5 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -					
	INFORMATION		ORILLING INFORMA	TION		
PROJECT: SITE NAME: SITE LOCATION: JOB NUMBER: PROJECT MANAGER: LOGGED BY:	Port of Tacoma Parcel 40 1675 Lincoln Avenue Tacoma, WA G. Hainsworth, P.E. R. Jones	DRILLING COMPAN DRILLING METHOD BORING DEPTH: BORING DIAMETER SOIL SCREENING: PLUGGING METHO	Direct Pusl 15 ft bgs 2.25-inch MiniRAE I			
DATE(S) DRILLED:	8/5/2020	ODOLIND ELEV		LATITU	DE	LONGITUDE
START TIME: 12:55	END TIME: 13:43	GROUND ELEV: ELEV. METHOD:	NM NM	48.926	7	122.811
REMARKS: East of Build	ling 600. In exit lane to Gate 2.	COOR. METHOD:	Lat./Long.		/EL: 10.1 ft bgs	
EELLH NULOGA S	SOIL DESCRIPTION		SAMPLE ID	DEPTH (ft bgs)	PID (ppm)	COMMENTS
	ASPHALT					
	gray to tan.		_			
	SAND, medium to coarse-grained, subround, min gray, slightly moist.	or to small GRAVEL,		1-2	12.8	
	At 3.8 ft bgs: Minor coarse-grained, undistubed la	yering seams, brown to		3-4	417.4	
5 sw	gray, slightly moist, mild hydrocarbon odors.			5-6	594	
				7-8	668.7	
	At 9 ft bgs: Moist.		SB-13-09	9-10	642.5	
, *	SILTY SAND, very fine to medium-grained, SILT depth, moderate hydrocarbon odor.	content increasing with				
	At 10-11 ft bgs: Oil sheen.			11-12	184.3	
SM	At 13-15 ft bgs: Black, medium-grained, hydrocar bgs.	bon odor taper off by 14 ft	SB-13-0820			
			SB-130-0820	13-14	31.9	

Boring Log

Page 1 of 1

LOCATION/BORING ID:

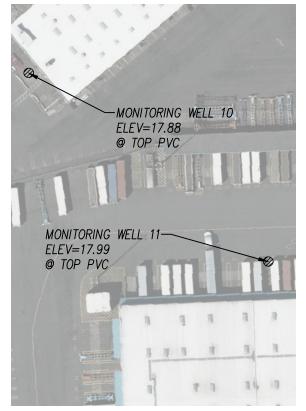
	PROJE	CTI	NFORMATION	, D	RILLING INFORMA	TION		
JOB N	IAME: OCATION: JMBER: ECT MANAGER:		Port of Tacoma Parcel 40 1675 Lincoln Avenue Tacoma, WA G. Hainsworth, P.E. R. Jones	DRILLING COMPAN DRILLING METHOD BORING DEPTH: BORING DIAMETER SOIL SCREENING: PLUGGING METHO	Direct Push 15 ft bgs 2.25-inch MiniRAE I	Techno		
	S) DRILLED:		8/5/2020	GROUND ELEV:	NM	LATITU	DE	LONGITUDE
START	TIME: 13:48		END TIME: 14:33	ELEV. METHOD:	NM	48.9271	L	122.8117
REMAI		f Buil	lding 600. Under 11th Street bypass.	COOR. METHOD:	Lat./Long.		VITIAL VATER LEV	EL: 10.1 ft bgs
DEPTH	LITHOLOGY	nscs	SOIL DESCRIPTION		SAMPLE ID	DEPTH (ft bgs)	PID (ppm)	COMMENTS
οΤ			ACDIJALT.		1			
		sw	ASPHALT FILL: GRAVELLY SAND, poorly-sorted, mostly co	parse-grained, tan, dry.				
-			SAND, fine to medium-grained sand, trace coarse moist to moist, no appreciable odors.	e-grained, brown, slightly		2-3	1.4	
5—						4-5	1.4	
		SP				5-6	1.0	
-						7-8	0.7	
10 - 5			SILTY SAND, fine to medium-grained, dark brown appreciable odors.	n, moist to wet, no	SB-14-09	9-10	0.7	
		SM				10.5- 11.5	0.7	
-					SB-14-0820	13-13.5	1.0	
15 —						14-15	0.5	

Boring Log

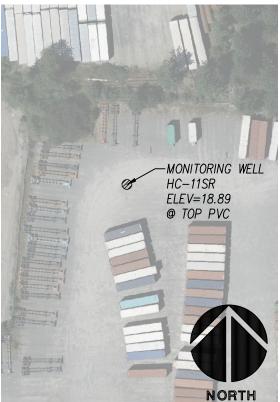
Page 1 of 1

LOCATION/BORING ID:

	PROJE	CT I	NFORMATION	D	RILLING INFORMA	TION		
SITE I JOB N PROJ	ECT: NAME: LOCATION: IUMBER: ECT MANAGER: ED BY:		Port of Tacoma Parcel 40 1675 Lincoln Avenue Tacoma, WA G. Hainsworth, P.E. R. Jones	DRILLING COMPAN DRILLING METHOD BORING DEPTH: BORING DIAMETER SOIL SCREENING: PLUGGING METHO	Direct Push 15 ft bgs 2.25-inch MiniRAE I	Techno		
DATE	(S) DRILLED:		8/5/2020	GROUND ELEV:	NM	LATITU	DE	LONGITUDE
STAR	T TIME: 14:40		END TIME: 15:28	ELEV. METHOD:	NM	48.9262	2	122.8108
REMA		st of	Building 600.	COOR. METHOD:	Lat./Long.		NITIAL VATER LEV	EL: 9.7 ft bgs
DEPTH	LITHOLOGY	nscs	SOIL DESCRIPTION		SAMPLE ID	DEPTH (ft bgs)	PID (ppm)	COMMENTS
0			ASPHALT GRAVELLY SAND, poorly-sorted, fine to very coa	area grained cubround				
-			gray to tan, dry.	ase-grained, subround,		1-2	1.8	
		sw	At 2.3 ft bgs: Tan to brown.					
			SAND, decreasing GRAVEL, mostly medium-grain	ned, dry.		4-5	1.9	
5+			At 5 ft bgs: Medium to coarse-grained, little to no moist.	GRAVEL, dry to slightly				
		SP				6-7	2.3	
			At 7.5 ft bgs: SAND, medium-grained, subangular moist.	r to subround, brown,				
			At 8.5 ft bgs: fine to medium-grained, some to about	undant SILT, brown, wet.	SB-15-08	8-8.5	1.7	
10 + s	z		SILTY SAND, mostly fine-grained, brown to dark	brown wot		9-10	1.3	
-			SILT F SAND, mostly line-grained, brown to dark	biowii, wet.		10.5- 11.5	1.4	
		SM			SB-15-0820	12-13	0.9	
					32 12 2020			
15 —						14-15	1.5	


Boring Log

Page 1 of 1


LOCATION/BORING ID:

	00110		Tukwia, v	V/1 30 100				
	PROJE	CT I	NFORMATION	D	RILLING INFORMA	TION		
JOB NU	AME: DCATION: JMBER: CT MANAGER	:	Port of Tacoma Parcel 40 1675 Lincoln Avenue Tacoma, WA G. Hainsworth, P.E. R. Jones	DRILLING COMPAN DRILLING METHOD BORING DEPTH: BORING DIAMETER SOIL SCREENING: PLUGGING METHO	Direct Push 15 ft bgs 2.25-inch MiniRAE I	1 Technol		
DATE(S) DRILLED:		8/5/2020	GROUND ELEV:	NIM	LATITUI	DE	LONGITUDE
START	TIME: 15:30		END TIME: 16:10	ELEV. METHOD:	NM NM	48.9259)	122.8132
REMAF		est of	Building 600.	COOR. METHOD:	Lat./Long.	1 \/	VITIAL VATER LEV	/EL: 11.7 ft bgs
DEPTH	LITHOLOGY	nscs	SOIL DESCRIPTION		SAMPLE ID	DEPTH (ft bgs)	PID (ppm)	COMMENTS
0			ASPHALT					
-		sw	FILL: SAND and GRAVEL, well-graded, dry to slig	ghtly moist.				
_			SAND, fine to medium-grained, little to no GRAVE moist.	EL, brown to dark brown,		1-2	0.5	
5+			At 5 ft bgs: Medium-grained with trace coarse-gra	ined, subround, trace		3.5-4.5	0.5	
		SP	subround to round GRAVEL (1-cm), moist.		SB-16-05	5-6	3.4	
						7-8	1.3	
10 +						9-10	1.0	
_			At 10 ft bgs: Moist to wet.					
			SILTY SAND, fine-grained, slightly cohesive, dark to saturated.	brown to dark gray, wet		11-12	1.0	
		SM			SB-16-0820			
						13-14	0.2	
15								

1675 LINCOLN AVE. SITE (1675)

3002 TAYLOR WAY SITE (3002)

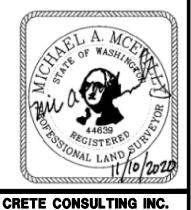
				MLLW (EPOCH 83-2001)			MLLW (EPOCH 1960-1978)	
WELL#	NORTHING	EASTING	TOP PVC	RIM	GROUND	TOP PVC	RIM	GROUND
MW-10	708,604.13	1,164,562.79	17.88	18.45	18.41	18.09	18.66	18.62
MW-11	708,407.63	1,164,812.06	17.99	18.38	18.32	18.20	18.59	18.53
HC-11SR	709,796.44	1,174,596.39	18.89	19.15	19.14	19.10	19.36	19.35
EXIST. MW-9 (1675)			17.96			18.17		
EXIST. MW-2*(1675)			17.25			17.46		
EXIST. HC-12S(3002)			18.61			18.82		

HORIZONTAL DATUM

WASHINGTON STATE PLANE COORDINATE SYSTEM, SOUTH ZONE, NAD 83/2011 (PER PORT OF TACOMA CONTROL MAP 2016)

VERTICAL DATUM

MLLW (PER PORT OF TACOMA 2016 SURVEY CONTROL MAP)


TIDE 22 1933 BENCHMARK: LOCATED AT NE CORNER OF 11TH ST. BRIDGE AT THE INTERSECTION OF E. 11TH ST. AND MILWAUKEE WAY ELEVATION = 19.18 (BASED ON 1983-2001 TIDAL EPOCH)

PORT OF TACOMA MONITORING WELLS

PROJECT NO. 19045

SITTS & HILL ENGINEERS, INC. CIVIL ■ STRUCTURAL ■ SURVEYING 4815 CENTER STREET TACOMA, WA. 98409 (253) 474-9449

108 SOUTH WASHINGTON STREET SEATTLE, WA 98104

Appendix D

Groundwater Sampling Forms and Field Notes

Low Flow Groundwater Sample Collection Record

Date: 3.26.20	Well ID: GFI - MW-/	
Project Name: POT- PARCEL 40	Location:	
Project Number:	Collector(s):	
Start Time:	End Time:	

Water Level Data

	Total Well Depth: 15.28' TOC		oc V	Water Table Depth:				77' TOC		
Screen Interval: Well Volume		1		Tubing Placement Depth:				BES	112	
				Well Volume (gallons) = 0.041xH(D^2) D= is in the inside diameter of the well casing, in inches H = Height of the water column (in feet)						
	ality Param	-	4							
Time (24 hr)	Vol. Purged (L)	Temp (C)	pН	Spec. Cond (uS/cm)	DO (mg/L)	ORP (mv)	Turbidity (NTU)	Flow Rate (ml/min)	DTW	Color/ Odor
11:05	100	11.15	8.94	0.990	0.00	-69	0	100	9.98	u
11:10	600	11.51	7.76	0.980	0.00	-97	0	100	10.06	a
11:15	1160	11.52	7.37	0.985	0.00	-103	D	100	10.10	
11:20	1600	11.41	7.20	0.983	0.00	-106	D	100	10.13	cl
11:25	2100	11.30	7.09	0.976	0,00	- 107	Δ	100	10.14	cl
11:30	2600	11.27	7.04	0.969	0.00		Ð	100	19.14	cl
		< A O			_ 11.					
		SAMP	2	TIME VOAS	= :	40				
			3	VOAS						
Acceptance	Criteria defi	ned:								
Temp	3%		+/- 1.0 ur	nit Spec	. Cond	3%	DO	10%		
Turbidity	<5 NTU*	ORP	+/- 10 N	1V Draw	vdown	<0.3'*				
Sample	e Collection:							Duplicate	CFL	MWZC

2 VOAs

^{*}Achievement of turbidity levels of less than 5 NTU, and stable drawdowns of less than 0.3 feet, while desirable, are not mandatory. If after 2 hours of purging indicator field parameters have not stabilized, discontinue purging, collect samples and provide full explanation of attempts to achieve stabilization.

Low Flow Groundwater Sample Collection Record

Date: 3.26.20	Well ID: GET -MW-5
Project Name: POT - PARCEL 40	Location:
Project Number:	Collector(s):
Start Time:	End Time:
Water Level Data	

r										
Total W	1 /14	80 70	,	Water Table	Depth:		all	2100		
Dept		00 10					9,9	9.43'70C		
Scre	11			Tubing Placement Depth:		BLG				
Interv	ell			M. 11 N. 1	, ,, ,			100/		
Volun	- 1			Well Volume D= is in the in				ver in inches		
Volui	ile			H = Height of				ig, in inches		
Pur	ge			Purge Rate:			(
Metho	d:									
Time (24	ality Paran		1							
hr)	Purged	Temp (C)	рН	Spec. Cond	DO (mg/L)	ORP	Turbidity (NTU)	Flow Rate	DTW	Color/
,	(L)			(uS/cm)	(IIIB/L)	(mv)	(NTO)	(ml/min)		Odor
13:22	100	12.24	6.23	0.000	11.96	10	256	100	9.55	cL
13:27	600	12.55	6.83		0.00		90.6	100	9.55	
13:32	1100	12.82	6.72			-/8	qu. 1	100	9.55	cL
13:37	1600	12.90	6.67		0.00		20.8	100	9.55	cl
13:42	2100	12.97	6.66	0.502			12.1	100	9.55	CL
13:47	2600	13.01	6.66	0.502	0.00		9.8	100	9.55	cl
		SAND	ا ملاء	ام م	- 116	. 0.0				
		onin		TIME	- / 4	:00				
			3 V	dAs						
Acceptance	Criteria defi	ned:								
Temp	3%	pH -	+/- 1.0 u	ınit Spec	. Cond	3%	DO	10%		
Turbidity	<5 NTU*	ORP	+/- 10 N	MV Draw	/down	<0.3′*				
Sample	Collection							Duplicate Details:		

^{*}Achievement of turbidity levels of less than 5 NTU, and stable drawdowns of less than 0.3 feet, while desirable, are not mandatory. If after 2 hours of purging indicator field parameters have not stabilized, discontinue purging, collect samples and provide full explanation of attempts to achieve stabilization.

Low Flow Groundwater Sample Collection Record

Date: 3.26.20	Well ID: GET -MW-8	
Project Name: POT- PINCE 40	Location:	
Project Number:	Collector(s): Pb	
Start Time:	End Time:	

Water Level Data

Total Well Depth:	15.02' TOC	Water Table Depth:	8.43'TOC
Screen Interval:		Tubing Placement Depth:	12' 645
Well Volume		Well Volume (gallons) = 0.041xH(D= is in the inside diameter of the H = Height of the water column (in	well casing, in inches
Purge Method:		Purge Rate:	

Water Quality Parameters

	anty raran	icters								
Time (24	Vol.	Temp (C)	pН	Spec.	DO	ORP	Turbidity	Flow	DTW	Color/
hr)	Purged			Cond	(mg/L)	(mv)	(NTU)	Rate		Odor
	(L)			(uS/cm)				(ml/min)		
12:21	100	11.05	6.49	0.000	12.90	-4	223	100	8.45	ce
12:26	600	11.38	7.16	0.373	0.00	-10	185	100	8.45	CL
12:31	1100	11.55	6.93	0.370	0.00	-7	184	100	8.45	a
12:36	1600	11.73	6.80	0.365	0.00	-6	180	100	8.45	CL
12:41	2100	11.90	6.73	0.361	0.00	-7	176	100	8.45	CL
12:46	2600	11.97	6.68	0.363	0.00	-7	168	100	8.45	CL
						-				
		CA	0	774	r _	1-3:0	_			
		JA.	MFL	///	<u> </u>	13.0	O			
				3 VOA						
				3 VOA						
Acceptance	Criteria def	ined:								
Temp	3%	pН	+/- 1.0 ur	nit Spec	. Cond	3%	DO	10%		
Turbidity	<5 NTU*	ORP	+/- 10 N	IV Drav	vdown	<0.3'*				
Sample	Collection:							Duplicate		
								Details:		
									l	

^{*}Achievement of turbidity levels of less than 5 NTU, and stable drawdowns of less than 0.3 feet, while desirable, are not mandatory. If after 2 hours of purging indicator field parameters have not stabilized, discontinue purging, collect samples and provide full explanation of attempts to achieve stabilization.

Low Flow Groundwater Sample Collection Record

Date:	Well ID: FEI-MW-9	
Project Name:	Location:	
Project Number:	Collector(s):	
Start Time:	End Time:	

Water Level Data

Total W Dept		41 10	c	Water Tabl	e Depth:		9.13	'rac		
Scree	en		T	Tubing Placement Depth:			bcs			
Volun Pur	ell ne ge, (F	E	Well Volume (gallons) = 0.041xH(D^2) D= is in the inside diameter of the well casing, in inches H = Height of the water column (in feet) Purge Rate:						
Water Qu	ality Param	eters								
Time (24 hr)	Vol. Purged	Temp (C)	рН	Spec. Cond (uS/cm)	DO (mg/L)	ORP (mv)	Turbidity (NTU)	Flow Rate (ml/min)	DTW	Color/ Odor
9:03	100	8.21	7.87	100.0	14.62	299	383	100	9.19	CLNC
9:08	600	8.28	8.10	0-001	13.57		329	100	9,19	CL NO
9:13	1100	8.38	8.14	100.0	12.39	295	195	100	9.19	and
9:18	1600	8.48	8.06		11.83	282	293	100	9,19	CLND
9:23°	2100	8.61	7.95	0.001	11.41	3	291	100	9.19	CLNS
9:28	2600	8.78	7.78		11.28	273	268	100	9.19	clab
9;33	3100	8.84	7.71	0000	11,12	2-73	291	100		el vo
	74	SAMPL	E J	ME :	9,4	+0	2			
			5 1	DAS						
Acceptance	Criteria def	ined:		·						
Temp	3%		+/- 1.0 u	ınit Sp	ec. Cond	3%	DO	10%		
Turbidity	<5 NTU*	ORP	+/- 10	MV Dr	awdown	<0.3'*				
Sample	e Collection:							Duplicate Details:		

^{*}Achievement of turbidity levels of less than 5 NTU, and stable drawdowns of less than 0.3 feet, while desirable, are not mandatory. If after 2 hours of purging indicator field parameters have not stabilized, discontinue purging, collect samples and provide full explanation of attempts to achieve stabilization:

Date:

3.26.20

Low Flow Groundwater Sample Collection Record

Project Name: Por-Parcel 40				Location:						
Project N	umber: 🐪				Collec	tor(s):	PB			
Start Tim	e:				End Ti	me:				
Water Le	vel Data									
Total W Dep			W	ater Table I	Depth:		FP = 9	8.70° 1.591 T B65	00	
-	Screen Tubing Place					nth:	1	1.01		
	Interval:					ptii.	12	B65		
W Volur	rell me		D=	/ell Volume (= is in the ins = Height of t	ide diame	eter of tl	he well casin	g, in inches	=	
Pur Metho	-		Pı	urge Rate;						
Water Qu	ality Param	eters								
Time (24 hr)	Vol. Purged (L)	Temp (C)	рН	Spec. Cond (uS/cm)	DO (mg/L)	ORP (mv)	Turbidity (NTU)	Flow Rate (ml/min)	DTW	Color/ Odor
		Dij	قىر	07	URE	6				
		54	MPL	Z TIM	E 1	14:	30			
			5 V	TIM						W.
	Criteria defi		. / 10:	:	C !	30/	5.0	4001		
Temp Turbidity	3% <5 NTU*	pH ORP	+/- 1.0 un +/- 10 M		Cond down	3% <0.3'*	DO	10%		
Sample	e Collection:							Duplicate Details:		

Well ID: ITC - RWI

^{*}Achievement of turbidity levels of less than 5 NTU, and stable drawdowns of less than 0.3 feet, while desirable, are not mandatory. If after 2 hours of purging indicator field parameters have not stabilized, discontinue purging, collect samples and provide full explanation of attempts to achieve stabilization.

SITE ID: Port of Tacoma	WELL ID:	MW-1	
Groundwater Sampling Field Data Sheet			

Project Number:	Parcel L	10 Investigation	Data	11.19.2020
Project Number.	14.00	10 INVOSTIGATION	Date:	11.11.0000

Casing Diameter (in)	Screened Interval (ft BGS)	Recommended Flow Rate for Well
2		< 175 mlymin
Total Depth of Well (ft BTOC)	Purge Equipment	Sample Equipment
15.28	GeoPump (peristaltie)	LDPE + Sillicone tubing
Initial Static Water from (ft BTOC)	Depth of Sample Intake (# BTOC)	Analytical Equipment
10.00	22ft from bottom	AguirRead AP-ZOOO WOM
Product Level from (ft BTOC)	Total Time Purged	Additional Details
- Not Present	23+ min	+ turbidity measurements
Length of Water Column (ft)	Pump Setting	not soll alle of
5,78	i i	Visual observations
1 Well Volume (gal)		VISUAL OBSERVATIONS

Time	Depth to Water (ft BTOC)	Flow Rate (mL/min)	Temp (°C)	SpC (ms/cin)	ORP (mV)	DO (mg/L)	pH (S.U.)	*Turbidity (NTU)	TDS (mg/L)
0539	10.01	Beginn	vice burg	e. Fill	ng flow ce	11.			
0542	10.38 8	1~125	11,48	2790	1.0	1.56	4.30	CIEAR 486	1755
0546	10.44	~ 125-150	13.13	2697	-79,4	0.45	6.39	CLEAR	1756
0550	10.69		13.30	2722	-83.0	0.33	6.56	436	1769
0554	10.88	5150	13,40	2697	-85.2	0.28	6.61	CLEAR:	1753
0558	11.08		13.58	2692	-86.2	0.23	lo-id	CIEAR	1756
0602	11.21		13:60	2697	-86.8	0.21	6,62	CLEAR	1753
	*More d	randour		deal fo	1 , 1.				
		-		b.		· ·		7	

Sample ID: GET-MW \- (170	Sample Date:	1.19,2020	Sample Time:			
Observations:						
Analytical Parameters:						
NWTPH-D	x, -Gx, BTEX					
Disposition of Purged Water:		Sampler Name & Date				
CLEAR yellowish-Hint,	HC odor	R. Jones	11.19.2020			

SITE ID: Port of Tacoma WELL ID: MW-Z

Groundwater	Sampling	Field	Data	Sheet
-------------	----------	-------	------	-------

2020

	1	
Casing Diameter (in)	Screened Interval (ft BGS)	Recommended Flow Rate for Well
2		~ 200 ml/min
Total Depth of Well (ft BTOC)	Purge Equipment	Sample Equipment
14,90	Geoting (peristatic)	LDPE + Silicone Jubing
Initial Static Water from (ft BTOC)	Depth of Sample Intake (ft BTOC)	Analytical Equipment
9,10	~ Z - from bottom	Agua Read AP-2000 WOM
Product Level from (ft BTOC)	Total Time Purged -7 204 minutes	Additional Details
Not Present	Started @ 0511	X-Tuckili more we want
Length of Water Column (ft)	Pump Setting	not reflective of
5,80		
1 Well Volume (gal)		Visual observations!

Time	Depth to Water (ft BTOC)	Flow Rate (mL/min)	Temp (°C)	SpC (ms/em) ^l	ORP (mV)	DO (mg/L)	pH (S.U.)	*Turbidity (NTU)	TBS.
0513	910 12	FION CELL	15:33	912	-63.7	0.95	7.62	CLEAR 352	592
05/7	9,41	~200	16.60	899	-78.6	0.38	7.64	CLEAR 340	585
052	9,47		16.80	909	-83.6	0.32	7.62	CIEAR 325	590
0525	9.52	J . V	16.88	904	- 89,9	0.27	7.65	CLEAR 313	587
0529	9,51	5200	16.80	898	- 93,3	0.25	7.66	CLEAR 310	585
0533	9,53		16.80	905	- 95.1	0.25	7.65	CLEAR 307	588
						1			
								-	

Sample ID: GEI-MWZ-1120	Sample Date:	1.20.2020	Sample T	ime: 0537
Observations:				
Analytical Parameters: NWTPH-	Dx, -Gx, B	TEX		
Disposition of Purged Water:		Sampler Name & Dat	e	
Clear		K.J.	nes	11,20.2020

SITE	ID:	ort of	Tacom	iq	V	VELL II): M	W-3	
Ground	dwater Sa	mpling F	ield Dat	a Sheet			1		
Project Number: Parce 40 Investigation Date: 11/18/2020									
Casing Dia	Casing Diameter (in) Screened Interval (ft BGS)					Recomm	nended Flow F	Rate for Well	7
	2						7 200 N	Umin	
Total Depti	n of Well (ft BT	OC)	Purge Eq		611.115	Sample	Equipment	,	
Initial Station	Water from (ft	BTOC)			cristaltic)	Y Analytic	E+ Bilicowe al Equipment	tubing	
	8.61		-	~1-Z-ft	from both	on Aqua	read WO	M '	
Product Le	vel from (ft BTC	,	Total Tim				al Details	1	
Length of V	Vater Column (Pump Se	304 _W	IIN		idity meas		
1 \\(\alpha\)	uma (gal)					Fina	purge u	wher clear.	
1 Well Volu	ime (gar)						, ,		
								45]
Time	Depth to Water (ft BTOC)	Flow Rate (mL/min)	Temp (°C)	SpC (ms/cm) f	ORP (mV)	DO (mg/L)	pH (S.U.)	*Turbidity (NTU)	mg/L
0417	8.61	Begin mie	repaire &	Filling.	Row cell.			****	
0421	8.63				÷10Z.3	0,88	5.73	475	1705
0475	8.65	7	14.30	2651	-109.7	0.35	6.85	CLEAR 384	1725
0429	8.65	6700	15.10	2641	-117.0	0.29	6.96	CLEAR 463	1718
04,33	8.66	1	15-10	2625	-120.6	0.22	7.00	CLEAR	1709
0437	2100	7 200	15.00	2630	-121.8	0.19	7.00	CLEAR	1704
					4	()			
2			0 1 5]
	EI-MW3-	1120	Sample D	ate:	8.2020	Sample	1 ime:		
Observation	s:								
Analytical P	arameters: ,	\w	1						
	of Purged Water	WTPH-D,-	G, BTEX		ampler Name &	Date			
Cle				5	апры нате с	R. Jone	5 11/18/2	1020	
									-

SITE ID:	Port of Tacoma	WELL ID:	MW-4
Groundwater	r Sampling Field Data Shoot		

Project Number:Parce	40 Investigation	Date: 1/, 20, 20
Casing Diameter (in)	Screened Interval (ft BGS)	Recommended Flow Rate for Well
2		L 150 ml/min
Total Depth of Well (ft BTOC)	Purge Equipment	Sample Equipment
15.08	GeoPump (peristratic) Depth of Sample Intake (ft BTOC) eq	LDPE + Silicone tubing
Initial Static Water from (ft BTOC)	Depth of Sample Intake (ft BTOC) 21	Analytical Equipment
9.75	~ Z-A from bottom	Agua Read AP-2000 WOM
Product Level from (ft BTOC)	Total Time Purged	Additional Details
- Not Present	Total Time Purged	* Tuby in make removate
Length of Water Column (ft)	Pump Setting	- Turbierry messurements
5.33		not reflective of visual observations.
1 Well Volume (gal)		113011 02321 (11013)

Time	Depth to Water (ft BTOC)	Flow Rate (mL/min)	Temp (°C)	SpC (ms/em)	ORP (mV)	DO (mg/L)	pH (S.U.)	*Turbidity (NTU)	TDS.
0424	9.75	Begin w	viero pura	e. Fill	ng flow co	il. —			+ '
0427	10.03	~ 150-175				1,01	2.96	CLEAR 635	1458
0431			14.30	2213	- 87.8	0.42	7.00	CLEAR 64Z	1439
0435	10.37		14.38	2220	-112.5	0.33	7.42	CLEAR 632	144-
0439	10.49		14.30	7219	-111.2	0.29	7.38	CLEAR 617	144/
0443	,	1	14.30	7775	-114.9	0.26	7.37	CLEAR 617	1446
04			RS						

Sample ID: GET-MW4-1120	Sample Date:	20,7020	Sample Time:	0447		
Observations:	11.	W, WW		099		
Observations.						
Analytical Parameters:	Analytical Parameters: NWTPH-Dx, Gx, BTEX					
	F, CK, 1310					
Disposition of Purged Water:	,	Sampler Name & Date				
Clear		R. Joi	neg 11.	20.20		
NW (YH - D) Disposition of Purged Water:	x, Gx, BTE	Sampler Name & Date	1.1	20.20		

SITE ID	: Port	of Tacoma
		100.0.1

WELL ID: MW-5

Groundwater Sampling Field Data Sheet

Project Number: Parce 40 Investigation Date: 11.19.2020

Screened Interval (ft BGS)	Recommended Flow Rate for Well
	2150 mL/m/n
Purge Equipment	Sample Equipment
Geohump (peristattie)	LDPE + Silicone tubing
Depth of Sample Intake (ft BTOC)	Analytical Equipment
~2 ft-from bottom	Aquakead AP-ZOOD WAM
Total Time Purged	Additional Details
19+ min	*Turbility measurements not reflective of visual observations.*
Pump Setting	not all to al
	The respective of
	Visual observations?
	Purge Equipment Geofum D (peristathic) Depth of Sample Intake (ILBTOC) PT ~2 ft-from bottom Total Time Purged 19 + min

Time	Depth to Water (ft BTOC)	Flow Rate (mL/min)	Temp (°C)	SpC (ms/cm)f	ORP (mV)	DO (mg/L)	pH (S.U.)	*Turbidity (NTU)	TBS (mg/c
0332	Regin mie	ropurato	Filling +	low cell					
0335	9.62	9:75	12,20	2569	- 84.1	1.06	6.20	CLEAR 635	1663
0339	9.78		14.80	2486	-72.3	0,39	6.97	CLEAR	1615
0343	9:78	1	15.10	2475	-71.6	0.32	6.91	CUEATZ 605	1609
0347	9.80	~150	15.70	24760	- 75.7	0,28	6.92	CLEAR	1602
0351	9.91	J	15.70	2458	-78.Z	0.25	6.91	CLEAR 596	1594
]

Sample ID: GET-MW5-1120	Sample Date: (1, 19, 2020	Sample Time: 0355
Observations:		
Analytical Parameters: NWTPH-D	r, -Gx, BTEX	
Disposition of Purged Water:	Sampler Name & Da	te
Cleur	K-Je	nes 11.19.2020

Project N	Number:	Parcel 40	Investi	gation		Date:	11.19	.2020	
Casing Dia	ameter (in)		Screened	Interval (ft E	BGS)		nended Flow F		7
							175 ml	I min	
Total Dept	n of Well (ft BTC	JC)	Purge Equ		(shollie)		Equipment Silicone	Luking	
Initial Stati	Water from (ft	BTOC)			istaltic)	Analytica	al Equipment		-
Droduct Lo	9.26 vel from (ft BTC	20)		A from	bottom		end AP-Zoo	00 WRM	
	+ Preses		Total Time	19+ m				surements	
	Vater Column (Pump Set	ting	. 11	not	- reflecti	isurements ve of	
1 Well Volu	5.84 Ime (gal)					Vis	ual obser	Vations,*	
	ame (gai)								
Time	Depth to Water (ft BTOC)	Flow Rate (mL/min)	Temp (°C)	SpC (ms/cm)-	ORP (mV)	DO (mg/L)	pH (S.U.)	⊀Turbidity (NTU)	TOS
0454	9.27	Begin m	icropinge		flow cell -				
0457		2150	13.58	1906	24.2	1,24	3.46	CLEAR 684	123
0501	9,40		15.00	1924	-65,2	0.36	6.50	COEAR	125
0505	9,44		15,20	1924	-74.2	0.20	6.67	CLEAR 658	125
0509	9.44	~150.175	15.30	1924	-79.0	0:22	6.71	CLEATZ 645	124
0513	9,44	<u></u>	15,20	1924	-80.4	0.18	6.72	CIEAR 638	175
								,	
	I-MW6=11	70	Sample D	ate: 11,19,	Zo	Sample	Time: 051	7	
Observatio	ns:								
nalytical F	Parameters:	JWTPH-D							-

SITE ID: Port of Tacoma WELL ID: MW-8
Groundwater Sampling Field Data Sheet

Project Number: Parcel L	O Investigation	Date:
Casing Diameter (in)	Screened Interval (ft BGS)	Recommended Flow Rate for Well
2		~250 mL/m/n
Total Depth of Well (ft BTOC)	Purge Equipment	Sample Equipment
15.05	Depth of Sample Intake. (#BFOC)	LDPE + Silicone Lubing
Initial Static Water from (ft BTOC)		Analytical Equipment
8.35	12-A from bottom	Agualead AP-ZOOWDM
Product Level from (ft BTOC)	Total Time Purged	Additional Details
- Not Present-	22+ min	* Turbidity measurements
Length of Water Column (ft)	Pump Setting	not reflective of
6.20		**Turbidity measurements not reflective of visual observations.**
1 Well Volume (gal)		

								T	
Time	Depth to Water (ft BTOC)	Flow Rate (mL/min)	Temp (°C)	SpC (ms/cm) k		DO (mg/L)	pH (S.U.)	*Turbidity (NTU)	TDS (mg/L)
0414	8,85	Begin MI	cro-purque	e. Fillin	q flow cell				
0416	8.88	Increasing	12.98	1607	-63,9	1.67	5.59	Very Clear 728	1052
0420	8.89	~250	15.80	1626	-80:3	0.30	6.65	CIEKR 663	1058
0424	8.91		15,90	1626	-84.7	0.19	6,68	CUEAR 641	1056
0428	8.90		15.90	1492	-85.1	0.13	6.66	CLEAR 580	976
0432	8.90		16.10	1481	-85.8	0.11	6.66	CLEAR 558	963
0436	8:90		16.00	1473	-84.6	0.09	6,65	CLEAR 547	962

Sample ID: GEI-MWS-1120	Sample Date: 1,19. 2020	Sample Time:				
Observations:						
Analytical Parameters: NWTPH-Dx, -Gx, BTEA						
Disposition of Purged Water:	Sampler Name & Da	te /				
Clear to very clear		R. Jones 11.19.20				

SITE ID: Port of Tacoma Groundwater Sampling Field Data Sheet

WELL ID: MW9

Project Number: Parcel 40 Investigation

	,	
Casing Diameter (in)	Screened Interval (ft BGS)	Recommended Flow Rate for Well
2		5 175 mL/min
Total Depth of Well (ft BTOC)	Purge Equipment	Sample Equipment
15.42	Geo Pump (peristattic) Depth of Sample Intake (#BTOC) RT	LDPE+ Silicone tubing
Initial Static Water from (ft BTOC)	Depth of Sample Intake (ft BTOC)	Analytical Equipment
10.44	~2-fot from bottom	Agua Read AP-2000 W&M
Product Level from (ft BTOC)	Total Time Purged	Additional Details
- Not Present	18+ min	* Turbidity measurements
Length of Water Column (ft)	Pump Setting	the die lie
4.98		not reflective of visual observations
1 Well Volume (gal)		7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

Time	Depth to Water (ft BTOC)	Flow Rate (mL/min)	Temp (°C)	SpC (msiem)	ORP (mV)	DO (mg/L)	pH (S.U.)	*Turbidity (NTU)	TBS (mg/L)
0347	10.45	Begin m	Cropurge	. Filling	flow cc	1.			
0349	10.60	Decreasing	15.63	1211	-77.8	0.53	7.34	CLEAR 201	787
0353	10.67	-150-175	17:38	1201	-92.9	0.33	7.37	CLEAR	780
0357	10.70	31. Increase	17.70	1254	-96.1	0:27	7.37	CUEATZ 189	815
0401	10.73		17,90	1251	- 98.3	0.24	7.35	CLEAR	813
0405	10.73	V	17.90	1263	-100.0	0.23	7,36	CLEAR 198	820

Sample ID: GEI-MW9-1120	Sample Date: (1, 20, 2020	Sample Time: 0409
Observations:		
Analytical Parameters:	0 ====	
NW IPH-	Dx, -Gx, BTEX	
Disposition of Purged Water:	Sampler Name & Da	
Clear, mild-mod. He odor	K. Jones	11.20.2020

SITE ID: Port of Tacoma	WELL ID:	MW-10
Groundwater Sampling Field Data Sheet		

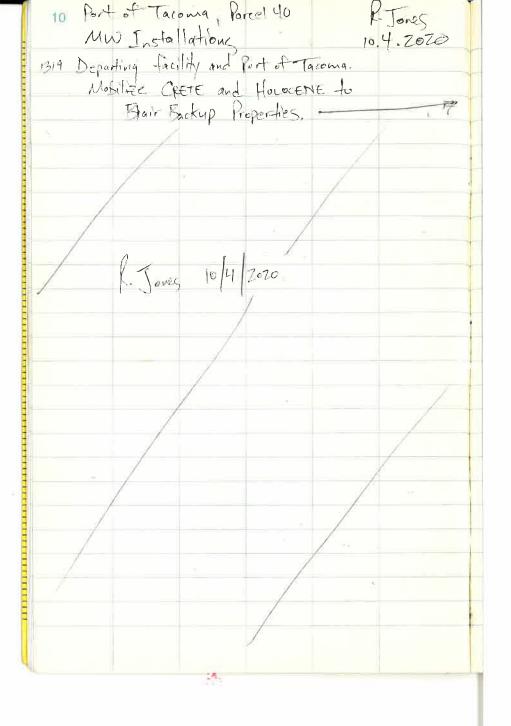
Project Number: Pane	10 Investigation	Date:
Casing Diameter (in)	Screened Interval (ft BGS)	Recommended Flow Rate for Well
2		7175 m L/min
Total Depth of Well (ft BTOC)	Purge Equipment	Sample Equipment
	GeoPump (peristattie)	LDPE + Silicone tubing
Initial Static Water from (ft BTOC)	Depth of Sample Intake (ft BTOC)	Analytical Equipment
10.58	~ 3 A from bottom	Agua Read WQM
Product Level from (ft BTOC)	Total Time Purged	Additional Details
- Not Present	20+ minutes	* Turbility measurements
Length of Water Column (ft)	Pump Setting	* Turbility measurements not reflective of
1 Well Volume (gal)		visual observations.*

Time	Depth to Water (ft BTOC)	Flow Rate (mL/min)	Temp (°C)	SpC (ms/em)	ORP (mV)	DO (mg/L)	pH (S.U.)	Turbidity (NTU)	TDS (mg/L)
0246	10.59	Begin mi	cro-purqu		flowcel	,			
0750	10.62	Increasing	13.88	2615	-125,5	0.81	7.24	CLEAR 831	1697
0254	10.64	~175	15.60	2589	-131.60	0.32	7.18	CLEAR 0821	1686
0758	. 10.64	3	16,00	2580	-134,4	0:26	7.17	CLEAR 0809	1678
0302	10.65	V	16,20	2575	-134.4	0.23	7.16	CLEAR 6805	1673
0306	10.66		16.10	2583	-134.8	0.20	7.15	CIEAR 0793	1678

Sample ID: GEI - MW10-11Z0	Sample Date: 11,19,7070	Sample Time: 0310			
,	00 for same sample suffer				
Analytical Parameters: NWTPH-Dx,-Gx, BTEX					
Disposition of Purged Water:	Sampler Name & I	Date			
Clear to very clear	P.	Janes 11.19.20			

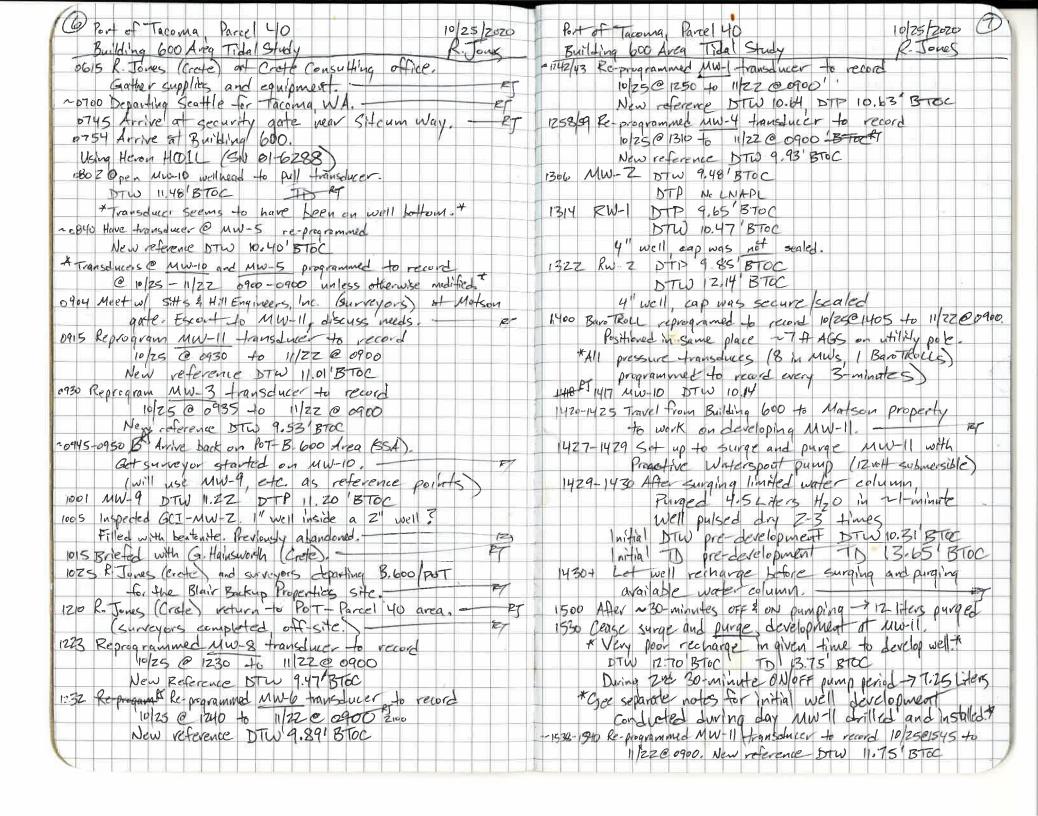
SITE ID: Port of Tacoma WELL ID: MW-11 Groundwater Sampling Field Data Sheet									
Project Number: Parcel 40 Investigation Date: 11/18/20									
Casing Dia	meter (in)		Screened	Interval (ft B	GS)			Rate for Well]
Total Depth	of Well (ft BTC	DC)	Purge Eq		1 (1)	Sample	Sample Equipment		
	Water from (ft o . 28	BTOC)			Haltil pump e(ftBTOG)ZJ		Analytical Equipment		
	vel from (ft BTC	OC)	Total Time	e Purged			Aguaread WQM Additional Details		
	Vater Column (f	ft)	Pump Set	ting		likely	not accu	ecrurements vate. was clear.	
1 Well Volu	me (gal)					Clea	e water v to very	clear	
Time	Depth to Water (ft BTOC)	Flow Rate (mL/min)	Temp (°C)	SpC (ms/cm)7	ORP (mV)	DO (mg/L)	pH (S.U.)	*Turbidity (NTU)	TDS (mg/L)
0333	~10.28	Begin mil	cap-brade	L. Filling	flow cell	34)
0335		4150	1430	2244	212.7	3.25	4.27	CUEAR 247	
0339	10.68	Decrease.	14.80	2238	211.5	0.35	4.22	CLEAR 246	7456
0343	1(.01	5125	14.80	2239	211.3	0.34		CLEAR ≥241	
0347	11.05	J	14.80	2225	0210.9	0.32		0243	
035	11.12	2100	14.70	7238	210.4	0.32		0730	1456
0355	11,15	V	14.70	2235	210.0	0.31	6.51	228	1454
Sample ID: Sample Date: 1 18 20 Sample Time: 0359									
Observations:									
Analytical Parameters: NWTP1-D -G BTEX									
,	Sampler Name & Date								
Very	ucar				1/6	ves 11	110 000)	1

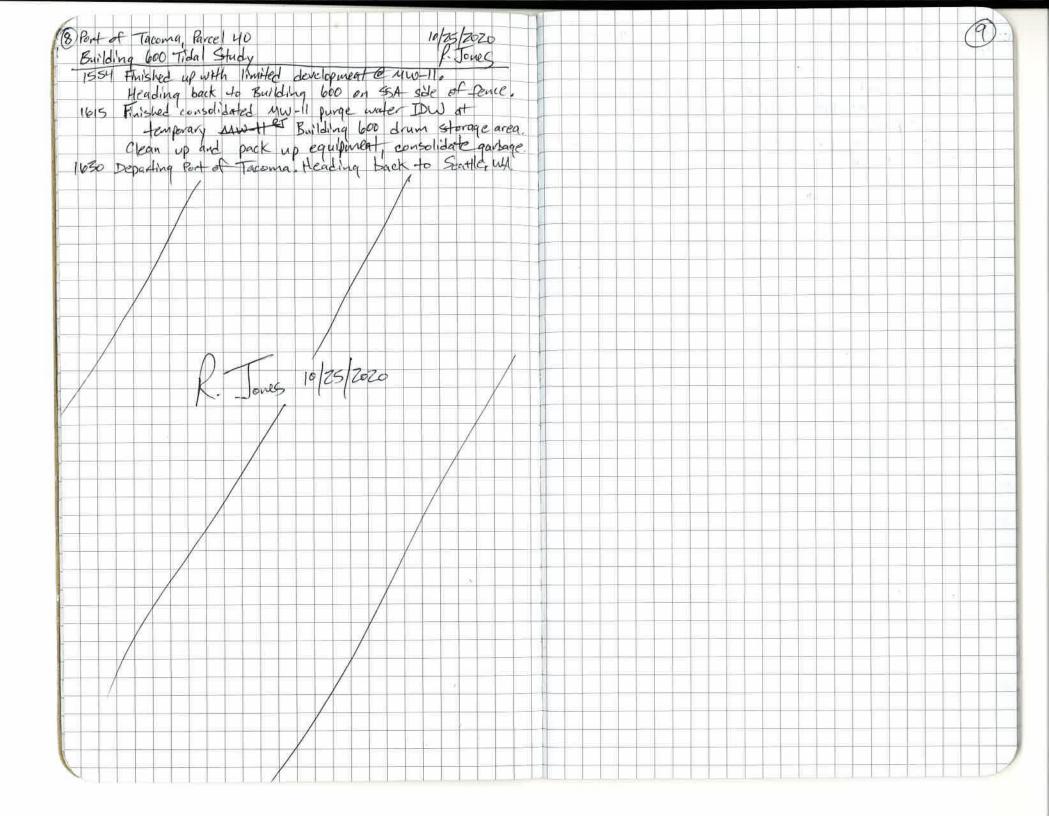
2 Port of Tacoma (POT) - Parcel 40 6.12.2020 Bldg. 600 Supplemental Investigation 0610 OBtain lie for sample coolers. 0701 P. Jones arrive on-site @ Guard Shacke 0705 APS (utility locator) on-site at entrance 20706 R. Jones, G. Hainswerth (Crete), Andrew Answorth (APS) heading to site. 0713 Begin locating/marking boring locations with Godal & APS 2015 Sarah Weeks w Port of Tacoma on site. 6716-0735 Crafe and POT continue marking boring locations. - 0745-0800 ESN (drillers) onsite @ Gate Z. Grant to escent driller to site (Maintenance Building . -0810-0825 Tailgute H&S Meeting Crete esn por *See separate
Tailgote Form with HASP. * - By ~ 0830 S. Weeks (Pot) heading off-site. 0830 Walk locations with Casey Newman (ESN) ~ c836 Set up at first borning location. Equipment: MiniRAE 3000 SN 59Z-91233Z 0843 * Zero w/ site air -> Rods 0.0-ppm 0845 * (al. w/ 100 ppm 1506utylene span-qus, PN 17-21-0100, Lot # 17-6008 (* Calibrated w/ moisture filter on Reads 100.Zppm w/ span-qas post-calibration.

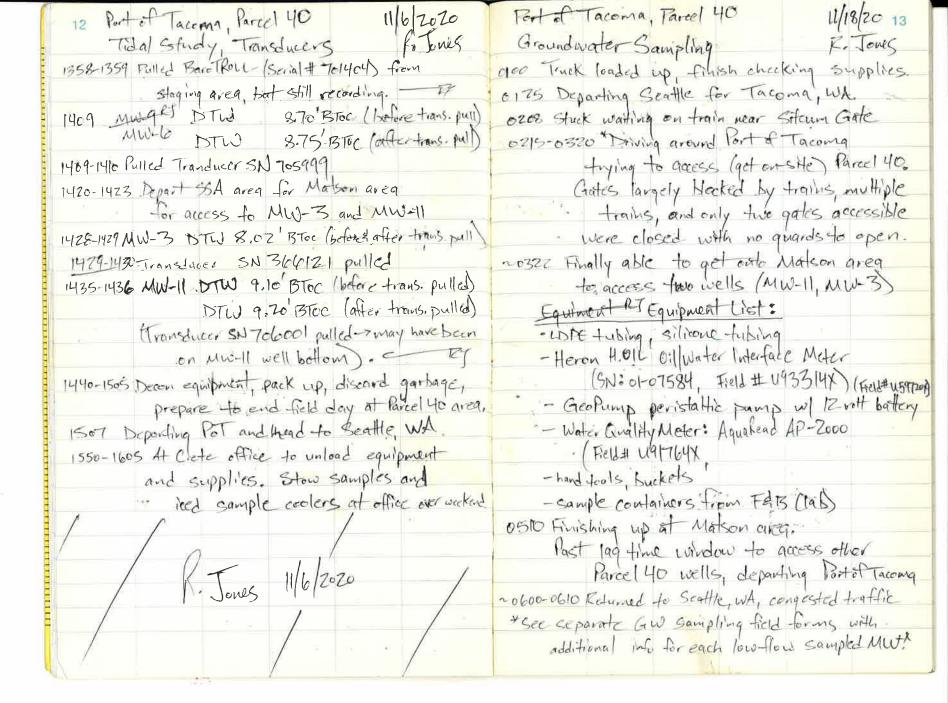

POT- Parcel 40 Building 600 Soil & GW Investigation 6.12.2020 0908 Quick sofety of My run-down (E-Stops, hydraulic shatoffs, etc.]. 0910 DPT pushing at SB-1 0911 G. Hainsworth (CRETE) and A. Answorth (HS) departing Bidg. 600 and heading off-site. * See separate Boring Log Forms for all SB-# boring locations.* * Soil & GW sample depths, times, etc. scribed on squate Boring Logs. ~0945-0950 J. Stevenson (CRETE) called for Status update, - 5 21020 G. Hainsworth called Informed us of gutterdrains. 1132 Notified G. Hainsworth by phone that free-phase LNAP observed at SB-03. (water & LNAPL in purged liquids), Highest PtD measurement thus for too. 1155 ESN re-setup at SB-01 and push to 25' bgs (screen 21-25' bgs) for Leeper GW sample. * ESN and Crete worked through lunch. * ~1555-1610 S. Weeks Por on-site. to get a quick stortus update. - P * Setting Macrolore Screen Shallow (211-15 BGS), for shallow Gw sample, then coving 15-25 das and setting screen again deeper 121-25/695)
is time-intensive and slow process! - 17

Port of Tacoma - Parcel 40 K. Jones 5 Port of Tacoma (Poit) - Parcel 40 Soil & GW Investigation, Bldg. 600 8/5/2020 Soil & Gw Supplemental Investigation 6.12.2020 ~ 0550 P. Jones arrive of CRETE office, gather supplies 1845 Finish DPT soil and GW sampling. and equipment, mobilize - By Conducting final down (drill equipment), ~ 0610 Depart site & for site, obtain ice for sample pack up, dean site, chick samples, coolers in rotte to site. - 3 consolidate IDW. ~ 0646 Arrive at greater quand shack area @ Crate Z, * Added minor (23-gal) purge nater, Port of Tacoma (POT), - By and decon water to existing 15 gal. 0646 ATS Locate (Scott N.) arrives at same-time. drum on-site (DRUM#1). Full * 0653 G. Haimsnorth (CRETE) arrives at Gute Z. Started DRUM-Z, Soil cuttings obsic Carnot takes ATS to employee parking lot 1845 Sample time (composite) of DRUM-1, to mark and clear soil boring in that area. 0705 ESN arrives at Gate Z. CRETE and ESN combined soil IDW for today's drilling. brief about sow. ~ 1900 Both R. Jones (CLETE) and C. Newman (ESN) 0708 R. Jones Lakes ESN to B. 600 employee departing Site and Pot, Lab (F&B) parking lot for first location - It closed. * Made arrangements to dropp off samples w/ F&B ever weekend. 2 0730 APS Locate cleared SB-10. Grant working w/ APS to mark and clear locations, R. Jones work w/ ESN to start DPT corning @ assigned lucations Z. Jones 06.12.2020 SB-10 0-15 DPT push, collect grab GW 11-15, then DPT push 15-25, Collect grab Gw 21-25' 0915 Finishing up @ SB-10 "See separate Soil Boring Logs for all SB locations for today. +

6 Port of Tacoma, Parcel 40, Bldg. 600 R. Jones	Port of Tacoma, Parcel 40, Bldg. 600 10/4/2020 7
	Boil and GW Investigation 3/5/2020
eq30 tecessing Matson area 8/5/2020	0550 R. Joues (Crete) @ Crete office. Gather
0936 Selling up at SB-11, T	supplies and equipment.
1025 De-mobilite from SB-11	obis Depart office for Port of Tacoma.
1033 Begin DPT push @ SB-12.	0654 Crete arrive at Matson security gate.
1145 Pour recharge of tooling & peristattic pump @ SE-12	Holocene Drilling already on-site @ gate.
@ 21-25' for GW sample. Sitt and sand	Minor mix-us with Motson security gaura
must have heared into tooling 127	resolved within minutes - ET
*ESN decided to pull tooling out decongest	0705 At Matson building with AB Locates,
screen, and try again. * 25	mark MW location, let APS utility
1255 Locate and set up @ 3B-13 7	locator begin aleaving/marking the aveg
1348 Locate and set up @ SB-14.	of utilities. RT
1433 Finished up & SB-14.	-0712 Ca-Hairsworth (Crete) on-site to work with
1440 Setup @ S1315 - 127	AB Locates to clear all setitiff boring
1530 Set up @ SB-16. FT	locations this morning,
1557 De-brief of Sarah weeks (Pot) RT	0710-0723 Tailgate Health & Satety Meeting
1604 De-Brief w/ G. Hainsworth (CRETE)	with Crete and Holocene, Discuss:
1610 ESN finishing upc SB-16 PT	- Site background/history, CoCs,
1630 IDW (decont purge water, soil cuttings	IDW mgmt, well construct design,
Consolidated in 2 new drums	logging needs, general rig safety, hospital location five exting, first aid kit
adjacent to drums from last time	hospital location five exting, first aid kit
water drum ~ 2/3 full Soil drum ~ 3/4	locations restroom facilities
1635 CRETE and ESN OFFSITE through side-gate	0724 Holacene, Crete, APS Walk site with I
near employee parking lot.	to discuss known withites
1649 R. Jones departing Pot to Seattle. 7	0725+ Holacene unload drill rig and set up
	Diedrich D-50 Turbo, trackrumoureles
3	


Port of Tacoma, Parcel 40 R. Jones 9 8 Port of Tacama, Parcel 40 f- Jones MW Installations 10/4/2020 MW Installations 10/4/2020 1025-1035 Head to Building 600 through a Hernate 0733 Holocene begin angering through asphatte security gate, Twic badges checked. Mortson area location 1035 Setting equipment up at MW-10 + Sec separate well log for 14hology, we'll construction information, etc. * RT * See separate logs for lithology and well construction defails + PT will field screen logged soils with PID and ziplocks. ~ 1040 Begin angering through asphatt @ MW-10 MiniPAE 3000 SN 592-908331 170 Reached 20 w/ HSAS, 21.5' BGS w/ spittspoon Field # 469845X *Calibrated by Field Instruments (separate)


*THE Begin Spirt spooning @ MW-11. @ MW-10 1127 Holocene begin well installation per Cete specs. ~1700 De-mobilizing rig from MW-10. Working on surface completions - RT 0825 Reached TD of 21.5 BGS w/ split-spoon. 21258 Finished up developing MW-10 Heaving sands, should have added water 1 (Surge and purge with 12 rott, Z-stage to HSAs to minimize heaving sands. subnersible pump) 0830-0845 Holocene trying to mitigate heaving sand > yields water adequately for came days and set well @ 5-15 BGS screen. of 16 Holocene pulled PVC to clean out borehole, HSAS, development. Ruged 50-60 gallons from MW-10 alone ede of heaved sands and reset well PVC Combined purge water from MW-11 (~3gal) at desired depth S-15 BGS MW-10 (>50 gal) and decon water 2095 Ho 1025 Develop MWHI some while is 51.5 drum volume * Will probably need to do additional finishing flushmount surface completion at MW-11 development on MW-11 prior to any Gw sampling from it * - PT Used Z-stage 12-vott submersible Productive 1309 Consulting J Dw drums with other already × Only purged ~ 3 gallons * and 1.5 - total water drums today.


	w w we we f
and free up memory space, sync-times with check transducer, do	unload existing data
1 6	11 1 - 11.0
and tree up memory space, sync-times wi	the current time,
check transducer stortis	
20020 Novella Co. Hla Co. Targer	
resso Departing Scattle for Tacoma	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
~0930 Swong by I Steum Way to see if LNAPL probe 0950 At Building 600, prep equipment, locate wells.	has been delivered. Nope
0000 44 B 411 400 000 10 1 1 1000 10 10 10 10 10 10 10	X 555
office the burning lood, prep equipment, locate werrs.	
Equipment: -1	
- Hand Tools, watch, Comerg, Map	111/2001
- Geotech Water Level (Field # 492852X, Se.	Tal # 6/89\
1024 Begin data-logging @ MW-4. Using In-Situ Rugged Trol	108 001 # 703994
long Begin Cand-logging C 2000 4, disting in sin jought from	(2011)
reference DTW 9.38, Transducer in well & ~1025.	Attached to bott hole on manhole.
Reference DTW 9.38, Transducer in well @ -1025. 1041 Begin data-logging@ MW-S. Using Instru Ruggestroll Reference DTW 8.67, transducer in well by	100 Social # 704098
	Attached to
Reference DIW 8-61, trainsducer in well by	1044 (DTW 0-66), soft hole
1058 Beni dota-leaging @ MW-10 Using InSite Record Tro	11 100 Seria # 703/052
25 9.7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1-12
1058 Begin data-legging @ MW-10. Using InSitu Rugged Tro Reference DTW 9.03, transducer in well by 1059	/DTLV ~ 9.02), strung to
bottom of expansion plug, Sealed,	ig
~1117 Begin data logging at MW-1. Using Insitu Rugged Tre	11 100, Serial # 36611
Reference STW 10:22 transducer in well by 1/20 (DT	W 10-20), strong to bottom of plug.
Strong HC odor on We probe after MW-1. Dec	a sel we mater than 11
Sing the ober on the probe differ roles. Det	The same of the same of the
1137 Begin data-logging @ Mia8. Using Insitu RuggedT	voll 1990 Serial # 103494
Reference DTW 8.75. transducer in well by	1141 (8.73). Treater manhole bott tole
Reference Dtw 8.75, transducer in well by ~1155 Segin data-logging @ MW-6. Using Insitu Rugged tool	1 100 C - 1 # 700 909
1100 Segin data regging C row 6. Using Mistra Ragged ro	1 100 SETIAL TOS
Reference DTW 9.12, transducer in well by 1157 ()	TW 9.10). Tied to manhale bott.
~ 1212-125 Began data-logging @ MW-3. Using Insitu Kugo	red trall 100 Seria #366/21
2 t = 2 t = 0 UN -1 -1 -1 12	2/2000 20 10 1 16 14
Reference DTW 8.40, transducer in well by 121	((DICO 0.)), 112 40 manhale DOTT.
1230 Began data-logging @ MW-11. Using Insitu Klagged	[roll 100, Senal # 10600]
Reference STUD 9.35 Landwer in well by 172	7/DTID 9 30 Lee to Bottom
(und sturbed)	Colored the State of the plany,
1230 Began data-logging @ MW-11. Using Insitu Rlogged Reference DTW 9.35 transducer in well by 123 E1249 Barotroll began data-logging, by 125 fund sturbed Lung and	taped in place - 1 ft ACIS
on power power on NW corner of site.	ET
1227 P. L. I. S. Level D. andrew Jana J.	10 P 411 . 100 and
1322 Packed up, deconved cleaned up garbage, depart	ing Ballaling 600 area
and Tacoma, WAO	F
10/21	2020
	12020
lones	
/	
* Used marked (Shapping style marking on all TOCs as measy	rolan palet for NTIA) +
*Used marked (Shappie style marking on all ToCs as measurements are ft BTOC. *	Politi (6, 1) (0)
All DIW, ID measurements are It 1510C,	KJ
BY 2. Jones DATE 10.21.2020	Sheet No of
Dille Joint	
PROJECT Port of Tacoma Parcel 40 Tidal Study	DROJECT AU MADER
PRUJECT TONT OF TACOMA TARRETTU TIDAL STUDY	PROJECT NUMBER

Port of Tacoma, Parcel 40 R. Jones 11 Tidal Study, Transducers 11/6/2020
Tidal Study Transducers 11/6/2020
1258 Arrive at Port of Tacoma, enter through
Siteum Gate (Lincoln Live Gate very Busy).
1301 At Building boc Area, prepare for gaging
wells and removing transducers Equipment 6
Geotech Water Lave Meter
SN 6789, Field # 4928524
1310 MW-8 DTW 8.32 BTOC (before & offer trans.)
1310 Transducer #703994 pulled
1370 MW-4. DTW. 8.92 BTCC (Selore trans, pull)
BTW. 8,93 BTEC (after trans. pull)
1320 Transducer # 703984 pulled
1329 MW-5 DTW 8.24 13Toc (before trans)
DTW 8.31 Bloc (after trans. pull)
(may have allowed trace winer water in when
pulling cap to access MW/trans.)
1330 Pilled Translucer SN 704098
1338 MW 10 DTW 8.99 BTOC (before fafter frame)
1338 Transducer SN 703652 pulled
14 = 348 MW-9 DTW 9.03" BTOC
1351 MW-1 DTW 9.82 BTCC (before trans. pulled)
9.88 BTOC (after trans, pulled)
1351 Transducer #366117 pulled
Moderate to strong AC odor

14 Port of Tacoma, Parcel 40 11/19/20	Port of Tacoma, Parcel 40 HIZO 2020 15 Groundwater Sampling R Jones 2013 Arrive @ Port of Tacoma. RT
14 Port of Tacoma, Parcel 40 11/19/20 Groundwater Sampling R. Jones	Groundwater Sampling & Jones
20130 R. Jones (Crote) departing Scattle, WA FT	20130 R. Jones (Crefe) Exparting Seattle, W.A PT
Truck loaded day/night prior (supplies, equip.)	~0213 Avrive @ Port of Tacoma. RT
-0211 Arriving at Port of Tacoma	20216-0320 Groundwester sampling @ Time Oil Site.
~0220 Enter Port through Gate @ 1002 Mil waykee Way	(see separate field notes for these details).
~0230 Setting up at MW-10 to micro-purge & sample.	*Same equipment list as on Page 13. PS
- * Came Equipment List as on Page 13.*	*Same equipment list as on Page 13. RS
+ See separate Giv Sampling forms for additional	Parameter Standard Post-Calibration
details at each MW/micro-purge locations	i i i i i i i i i i i i i i i i i i i
iozzo-0610 Low-flow sampling of	5pc 1409 uS/cm 1409 uS/cm
mw-10, mw-5, mw-8, mw-6, mw-1	7.0 9.d. 7.00 s.d.
0610 Clean up site decon equipment, pack up	SPC 1409 uSlam 1409 uSlam PH 7.0 S.U. 7.00 S.U. ECMP. FACTORY CAUBRATED Do Not Field-Calibrated
0678 MW-9 DTP None	Do Not Field-Calibrated
DTW 10.06 BTOC absorbert * Was intending to install a sock at MULG	+1-point pt calibration ldevice only allowed
* was intending to install a sock at Mula	1-pt cal due to "low battery warning)
But no WAPL measure at present	Softing up @ Mus-9
and sock does not fit in well, - 1	Softing up @ Mus-9
0645 Off site of Parcel 40 (Building 600 avea)	"Lowittow Sample remainin Site Mus.
0645 Head to Pet Time Oil Site	+See separate Groundwater Sampling Form
(SEL SEparate field notes).	Lov additional defails.
	~ 0600 Decouned equipment, site cleaned IDW (purge Hzd)
	parisolidated packed departing site and Pot
11/19/20	notoo keturned to Seattle WA
R. Jones 11/19/20	1311 Signed over and delivered samples to
	Friedman & Bruya (F&B) 10b By
	- f. Jones 11/20/20 -

Appendix E

Soil and Groundwater Laboratory Reports

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

April 9, 2020

Jamie Stevens, Project Manager Crete Consulting 108 S. Washington St., Suite 300 Seattle, WA 98104

Dear Ms Stevens:

Included are the results from the testing of material submitted on March 27, 2020 from the POT - Parcel 40, F&BI 003444 project. There are 14 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures CTC0409R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on March 27, 2020 by Friedman & Bruya, Inc. from the Crete Consulting POT - Parcel 40, F&BI 003444 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Crete Consulting
003444 -01	GEI-MW1-0320
003444 -02	GEI-MW5-0320
003444 -03	GEI-MW8-0320
003444 -04	GEI-MW9-0320
003444 -05	GEI-RW1-0320
003444 -06	GEI-MW39-0320

Samples GEI-MW1-0320 and GEI-MW9-0320 were sent to Fremont Analytical for VPH analysis. The report is enclosed.

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: GEI-MW1-0320 Client: Crete Consulting

Date Received: 03/27/20 Project: POT - Parcel 40, F&BI 003444

Date Extracted: 03/30/20 Lab ID: 003444-01 Date Analyzed: 03/30/20 Data File: 033043.DGCMS9Matrix: Water Instrument: Units: ug/L (ppb) VMOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	94	50	150
Toluene-d8	108	50	150
4-Bromofluorobenzene	92	50	150

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	4.1
Trichlorofluoromethane	<1	Ethylbenzene	5.6
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<1	o-Xylene	5.4
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	2.9
trans-1,2-Dichloroethene	<1	Bromoform	<1
1,1-Dichloroethane	<1	n-Propylbenzene	2.9
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	<1
2-Butanone (MEK)	<10	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	<1	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	< 0.56	1,2,4-Trimethylbenzene	3.1
Benzene	28	sec-Butylbenzene	<1
Trichloroethene	<1	p-Isopropyltoluene	1.6
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	<1	1,4-Dichlorobenzene	<1
Dibromomethane	< 0.27	1,2-Dichlorobenzene	1.2
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	<1	1,2,4-Trichlorobenzene	<1
Toluene	2.8	Hexachlorobutadiene	< 0.8
trans-1,3-Dichloropropene	<1	Naphthalene	1.2
1,1,2-Trichloroethane	<1	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: GEI-MW5-0320 Client: Crete Consulting

Date Received: 03/27/20 Project: POT - Parcel 40, F&BI 003444

Date Extracted: 03/30/20 Lab ID: 003444-02 Date Analyzed: 03/30/20 Data File: 033042.DGCMS9Matrix: Water Instrument: Units: ug/L (ppb) VMOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	96	50	150
Toluene-d8	109	50	150
4-Bromofluorobenzene	96	50	150

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<1	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<1
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	<1
2-Butanone (MEK)	<10	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	<1	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	< 0.56	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	<1	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	<1	1,4-Dichlorobenzene	<1
Dibromomethane	< 0.27	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	<1	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	< 0.8
trans-1,3-Dichloropropene	<1	Naphthalene	<1
1,1,2-Trichloroethane	<1	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: GEI-MW8-0320 Client: Crete Consulting

Date Received: 03/27/20 Project: POT - Parcel 40, F&BI 003444

Date Extracted: 03/31/20 Lab ID: 003444-03 Date Analyzed: 04/01/20 Data File: 040120.DMatrix: Water Instrument: GCMS4Units: ug/L (ppb) MSOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	105	57	121
Toluene-d8	103	63	127
4-Bromofluorobenzene	88	60	133

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<1	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<1
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	<1
2-Butanone (MEK)	<10	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	<1	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	< 0.56	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	<1	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	<1	1,4-Dichlorobenzene	<1
Dibromomethane	<0.27 j	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	<1	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	< 0.8
trans-1,3-Dichloropropene	<1	Naphthalene	<1
1,1,2-Trichloroethane	<1	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: GEI-MW9-0320 Client: Crete Consulting

Date Received: 03/27/20 Project: POT - Parcel 40, F&BI 003444

Date Extracted: 03/31/20 Lab ID: 003444-04 Date Analyzed: 04/01/20 Data File: 040121.DMatrix: Water Instrument: GCMS4Units: ug/L (ppb) MSOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	105	57	121
Toluene-d8	107	63	127
4-Bromofluorobenzene	93	60	133

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	2.6
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<1	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	1.8
trans-1,2-Dichloroethene	<1	Bromoform	<1
1,1-Dichloroethane	<1	n-Propylbenzene	1.5
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	<1
2-Butanone (MEK)	<10	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	<1	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	< 0.56	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	2.2
Trichloroethene	<1	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	<1	1,4-Dichlorobenzene	<1
Dibromomethane	<0.27 j	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	<1	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	< 0.8
trans-1,3-Dichloropropene	<1	Naphthalene	<1
1,1,2-Trichloroethane	<1	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: GEI-MW39-0320 Client: Crete Consulting

Date Received: 03/27/20 Project: POT - Parcel 40, F&BI 003444

03/30/20 Lab ID: 003444-06 Date Extracted: Date Analyzed: 03/30/20 Data File: 033041.DMatrix: Water Instrument: GCMS9 Units: ug/L (ppb) Operator: VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	97	50	150
Toluene-d8	107	50	150
4-Bromofluorobenzene	95	50	150

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	4.2
Trichlorofluoromethane	<1	Ethylbenzene	5.5
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<1	o-Xylene	5.2
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	2.8
trans-1,2-Dichloroethene	<1	Bromoform	<1
1,1-Dichloroethane	<1	n-Propylbenzene	2.9
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	<1
2-Butanone (MEK)	<10	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	<1	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	< 0.56	1,2,4-Trimethylbenzene	3.1
Benzene	28	sec-Butylbenzene	<1
Trichloroethene	<1	p-Isopropyltoluene	1.5
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	<1	1,4-Dichlorobenzene	<1
Dibromomethane	< 0.27	1,2-Dichlorobenzene	1.3
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	<1	1,2,4-Trichlorobenzene	<1
Toluene	2.9	Hexachlorobutadiene	< 0.8
trans-1,3-Dichloropropene	<1	Naphthalene	1.1
1,1,2-Trichloroethane	<1	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: Method Blank Client: Crete Consulting

Date Received: Not Applicable Project: POT - Parcel 40, F&BI 003444

03/30/20 Lab ID: 00-757 mbDate Extracted: Date Analyzed: 03/30/20 Data File: 033011.DMatrix: Water Instrument: GCMS9 Units: ug/L (ppb) MSOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	50	150
Toluene-d8	103	50	150
4-Bromofluorobenzene	93	50	150

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<1	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<1
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	<1
2-Butanone (MEK)	<10	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	<1	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	< 0.56	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	<1	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	<1	1,4-Dichlorobenzene	<1
Dibromomethane	< 0.27	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	<1	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	< 0.8
trans-1,3-Dichloropropene	<1	Naphthalene	<1
1,1,2-Trichloroethane	<1	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: GEI-RW1-0320 Client: Crete Consulting

Date Received: 03/27/20 Project: POT - Parcel 40, F&BI 003444

03/31/20 Lab ID: 003444-05 1/200 Date Extracted: Date Analyzed: 04/01/20 Data File: 040116.DMatrix: Soil/Product Instrument: GCMS4Units: mg/kg (ppm) MSOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	108	57	121
Toluene-d8	105	63	127
4-Bromofluorobenzene	94	60	133

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	<100	1,3-Dichloropropane	<10
Chloromethane	<100	Tetrachloroethene	<5
Vinyl chloride	<10	Dibromochloromethane	<10
Bromomethane	<100	1,2-Dibromoethane (EDB)	<10
Chloroethane	<100	Chlorobenzene	14
Trichlorofluoromethane	<100	Ethylbenzene	<10
Acetone	<100	1,1,1,2-Tetrachloroethane	<10
1,1-Dichloroethene	<10	m,p-Xylene	<20
Hexane	<50	o-Xylene	<10
Methylene chloride	<100	Styrene	<10
Methyl t-butyl ether (MTBE)	<10	Isopropylbenzene	<10
trans-1,2-Dichloroethene	<10	Bromoform	<10
1,1-Dichloroethane	<10	n-Propylbenzene	10
2,2-Dichloropropane	<10	Bromobenzene	<10
cis-1,2-Dichloroethene	<10	1,3,5-Trimethylbenzene	<10
Chloroform	<10	1,1,2,2-Tetrachloroethane	<10
2-Butanone (MEK)	<100	1,2,3-Trichloropropane	<10
1,2-Dichloroethane (EDC)	<10	2-Chlorotoluene	<10
1,1,1-Trichloroethane	<10	4-Chlorotoluene	<10
1,1-Dichloropropene	<10	tert-Butylbenzene	<10
Carbon tetrachloride	<10	1,2,4-Trimethylbenzene	<10
Benzene	<6	sec-Butylbenzene	16
Trichloroethene	<4	p-Isopropyltoluene	49
1,2-Dichloropropane	<10	1,3-Dichlorobenzene	21
Bromodichloromethane	<10	1,4-Dichlorobenzene	19
Dibromomethane	<10	1,2-Dichlorobenzene	<10
4-Methyl-2-pentanone	<100	1,2-Dibromo-3-chloropropane	<100
cis-1,3-Dichloropropene	<10	1,2,4-Trichlorobenzene	< 50
Toluene	<10	Hexachlorobutadiene	< 50
trans-1,3-Dichloropropene	<10	Naphthalene	<10
1,1,2-Trichloroethane	<10	1,2,3-Trichlorobenzene	< 50
2-Hexanone	<100		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: Method Blank Client: Crete Consulting

Date Received: Not Applicable Project: POT - Parcel 40, F&BI 003444

03/31/20 Lab ID: 00-762 mbDate Extracted: Date Analyzed: 03/31/20 Data File: 033109.DMatrix: Soil/Product Instrument: GCMS4 Units: mg/kg (ppm) Operator: VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	105	62	145
Toluene-d8	106	55	145
4-Bromofluorobenzene	94	65	139

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Hexane	< 0.25	o-Xylene	< 0.05
Methylene chloride	< 0.5	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Bromoform	< 0.05
1,1-Dichloroethane	< 0.05	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	< 0.5	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.05	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.03	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.02	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.05	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.05
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Date of Report: 04/09/20 Date Received: 03/27/20

Project: POT - Parcel 40, F&BI 003444

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 003447-01 (Matrix Spike)

Laboratory Code: 003447-01 (Ma	itrix Spike)			Percent	
	Reporting	Spike	Sample		Acceptance
Analyte	Units	Level	Result	MS	Criteria
Dichlorodifluoromethane	ug/L (ppb)	50	<1	83	55-137
Chloromethane	ug/L (ppb)	50	<10	85	57-129
Vinyl chloride	ug/L (ppb)	50	45	84 b	61-139
Bromomethane	ug/L (ppb)	50	<1	90	20-265
Chloroethane	ug/L (ppb)	50	<1	90	55-149
Trichlorofluoromethane	ug/L (ppb)	50	<1	95	65-137
Acetone	ug/L (ppb)	250	<50	84	48-149
1,1-Dichloroethene Hexane	ug/L (ppb) ug/L (ppb)	50 50	3.5 <1	95 90	71-123 44-139
Methylene chloride	ug/L (ppb) ug/L (ppb)	50 50	<5	87	61-126
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	<1	96	68-125
trans-1.2-Dichloroethene	ug/L (ppb)	50	3.7	92	72-122
1,1-Dichloroethane	ug/L (ppb)	50	<1	94	79-113
2,2-Dichloropropane	ug/L (ppb)	50	<1	94	48-157
cis-1,2-Dichloroethene	ug/L (ppb)	50	580	18 b	63-126
Chloroform	ug/L (ppb)	50	<1	95	77-117
2-Butanone (MEK)	ug/L (ppb)	250	<10	86	70-135
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	<1	90	70-119
1,1,1-Trichloroethane	ug/L (ppb)	50	<1	97	75-121
1,1-Dichloropropene	ug/L (ppb)	50	<1	99	67-121
Carbon tetrachloride Benzene	ug/L (ppb)	50	<1	97	70-132
Trichloroethene	ug/L (ppb) ug/L (ppb)	50 50	<0.35 390	95 84 b	75-114 73-122
1,2-Dichloropropane	ug/L (ppb) ug/L (ppb)	50 50	<1	94	80-111
Bromodichloromethane	ug/L (ppb)	50 50	<1	98	78-117
Dibromomethane	ug/L (ppb)	50	<1	90	73-125
4-Methyl-2-pentanone	ug/L (ppb)	250	<10	98	79-140
cis-1,3-Dichloropropene	ug/L (ppb)	50	<1	92	76-120
Toluene	ug/L (ppb)	50	<1	104	73-117
trans-1,3-Dichloropropene	ug/L (ppb)	50	<1	91	75-122
1,1,2-Trichloroethane	ug/L (ppb)	50	<1	94	81-116
2-Hexanone	ug/L (ppb)	250	<10	90	74-127
1,3-Dichloropropane	ug/L (ppb)	50	<1	90	80-113
Tetrachloroethene	ug/L (ppb)	50	4,700	0 b	40-155
Dibromochloromethane 1,2-Dibromoethane (EDB)	ug/L (ppb)	50 50	<1 <1	104 94	69-129 79-120
Chlorobenzene	ug/L (ppb) ug/L (ppb)	50 50	1.7	98	75-120 75-115
Ethylbenzene	ug/L (ppb)	50	<1	100	66-124
1,1,1,2-Tetrachloroethane	ug/L (ppb)	50	<1	108	76-130
m,p-Xylene	ug/L (ppb)	100	<2	103	63-128
o-Xylene	ug/L (ppb)	50	<1	108	64-129
Styrene	ug/L (ppb)	50	<1	104	56-142
Isopropylbenzene	ug/L (ppb)	50	<1	105	74-122
Bromoform	ug/L (ppb)	50	<1	100	49-138
n-Propylbenzene	ug/L (ppb)	50	<1	103	65-129
Bromobenzene	ug/L (ppb)	50	<1	104	70-121
1,3,5-Trimethylbenzene 1,1,2,2-Tetrachloroethane	ug/L (ppb) ug/L (ppb)	50 50	<1 <1	106 98	60-138 77-120
1,2,3-Trichloropropane	ug/L (ppb) ug/L (ppb)	50 50	<1	94	62-125
2-Chlorotoluene	ug/L (ppb)	50	<1	102	40-159
4-Chlorotoluene	ug/L (ppb)	50	<1	97	76-122
tert-Butylbenzene	ug/L (ppb)	50	<1	109	74-125
1,2,4-Trimethylbenzene	ug/L (ppb)	50	<1	106	59-136
sec-Butylbenzene	ug/L (ppb)	50	<1	104	69-127
p-Isopropyltoluene	ug/L (ppb)	50	<1	102	64-132
1,3-Dichlorobenzene	ug/L (ppb)	50	<1	100	77-113
1,4-Dichlorobenzene	ug/L (ppb)	50	<1	99	75-110
1,2-Dichlorobenzene	ug/L (ppb)	50	<1	102	70-120
1,2-Dibromo-3-chloropropane	ug/L (ppb)	50	<10	92	69-129
1,2,4-Trichlorobenzene	ug/L (ppb)	50	<1	102	66-123
Hexachlorobutadiene Naphthalene	ug/L (ppb) ug/L (ppb)	50 50	<1 <1	101 101	53-136 60-145
Naphthalene 1,2,3-Trichlorobenzene	ug/L (ppb) ug/L (ppb)	50 50	<1	99	59-130
1,2,0-1110HOLODEHZEHE	ug/Li (ppu)	90	~1	99	99-190

ENVIRONMENTAL CHEMISTS

Date of Report: 04/09/20 Date Received: 03/27/20

Project: POT - Parcel 40, F&BI 003444

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Education Court Education Con	rer or a diripre		Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Dichlorodifluoromethane	ug/L (ppb)	50	98	93	50-157	5
Chloromethane	ug/L (ppb)	50	100	98	62-130	2
Vinyl chloride	ug/L (ppb)	50	106	105	70-128	1
Bromomethane	ug/L (ppb)	50	105	104	60-143	1
Chloroethane	ug/L (ppb)	50	105	103	66-149	2
Trichlorofluoromethane Acetone	ug/L (ppb) ug/L (ppb)	$\frac{50}{250}$	109 89	109 83	65-138 $44-145$	0 7
1,1-Dichloroethene	ug/L (ppb) ug/L (ppb)	50 50	111	111	72-121	0
Hexane	ug/L (ppb)	50 50	104	103	51-153	1
Methylene chloride	ug/L (ppb)	50	102	101	63-132	1
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	108	109	70-122	1
trans-1,2-Dichloroethene	ug/L (ppb)	50	107	107	76-118	0
1,1-Dichloroethane	ug/L (ppb)	50	105	105	77-119	0
2,2-Dichloropropane	ug/L (ppb)	50	113	112	62-141	1
cis-1,2-Dichloroethene	ug/L (ppb)	50	109	110	76-119	1
Chloroform 2-Butanone (MEK)	ug/L (ppb) ug/L (ppb)	$\frac{50}{250}$	105 90	104 91	78-117 48-150	1 1
1,2-Dichloroethane (EDC)	ug/L (ppb) ug/L (ppb)	250 50	93	91 95	48-150 75-116	$\frac{1}{2}$
1.1.1-Trichloroethane	ug/L (ppb)	50 50	109	110	80-116	1
1,1-Dichloropropene	ug/L (ppb)	50	103	102	78-119	1
Carbon tetrachloride	ug/L (ppb)	50	110	110	72-128	0
Benzene	ug/L (ppb)	50	99	100	75-116	1
Trichloroethene	ug/L (ppb)	50	99	100	72-119	1
1,2-Dichloropropane	ug/L (ppb)	50	101	102	79-121	1
Bromodichloromethane	ug/L (ppb)	50	102	103	76-120	1
Dibromomethane	ug/L (ppb)	50	96	97	79-121	1
4-Methyl-2-pentanone cis-1,3-Dichloropropene	ug/L (ppb) ug/L (ppb)	$\frac{250}{50}$	105 99	110 101	54-153 76-128	$\frac{5}{2}$
Toluene	ug/L (ppb)	50 50	103	103	79-115	0
trans-1,3-Dichloropropene	ug/L (ppb)	50	98	98	76-128	0
1,1,2-Trichloroethane	ug/L (ppb)	50	97	100	78-120	3
2-Hexanone	ug/L (ppb)	250	87	90	49-147	3
1,3-Dichloropropane	ug/L (ppb)	50	95	94	81-111	1
Tetrachloroethene	ug/L (ppb)	50	105	105	78-109	0
Dibromochloromethane	ug/L (ppb)	50	108	108	63-140	0
1,2-Dibromoethane (EDB) Chlorobenzene	ug/L (ppb)	50 50	98 99	100 100	82-118 80-113	$\frac{2}{1}$
Ethylbenzene	ug/L (ppb) ug/L (ppb)	50 50	103	100	80-113 83-111	1
1,1,1,2-Tetrachloroethane	ug/L (ppb)	50 50	111	111	76-125	0
m,p-Xylene	ug/L (ppb)	100	106	107	81-112	1
o-Xylene	ug/L (ppb)	50	110	111	81-117	1
Styrene	ug/L (ppb)	50	106	107	83-121	1
Isopropylbenzene	ug/L (ppb)	50	110	110	78-118	0
Bromoform	ug/L (ppb)	50	106	106	40-161	0
n-Propylbenzene	ug/L (ppb)	50 50	103	104	81-115	1
Bromobenzene 1,3,5-Trimethylbenzene	ug/L (ppb) ug/L (ppb)	50 50	101 109	104 109	80-113 83-117	3
1,1,2,2-Tetrachloroethane	ug/L (ppb) ug/L (ppb)	50 50	98	100	79-118	2
1,2,3-Trichloropropane	ug/L (ppb)	50	93	95	74-116	$\frac{2}{2}$
2-Chlorotoluene	ug/L (ppb)	50	103	104	79-112	1
4-Chlorotoluene	ug/L (ppb)	50	98	99	80-116	1
tert-Butylbenzene	ug/L (ppb)	50	110	109	81-119	1
1,2,4-Trimethylbenzene	ug/L (ppb)	50	107	108	81-121	1
sec-Butylbenzene	ug/L (ppb)	50	109	108	83-123	1
p-Isopropyltoluene	ug/L (ppb)	50 50	108 101	105 101	81-117 80-115	3
1,3-Dichlorobenzene 1,4-Dichlorobenzene	ug/L (ppb) ug/L (ppb)	50 50	101 98	101	80-115 77-112	0 2
1,4-Dichlorobenzene 1,2-Dichlorobenzene	ug/L (ppb) ug/L (ppb)	50 50	98 101	100	77-112	0
1,2-Dibromo-3-chloropropane	ug/L (ppb)	50	98	99	62-133	1
1,2,4-Trichlorobenzene	ug/L (ppb)	50	108	107	75-119	1
Hexachlorobutadiene	ug/L (ppb)	50	107	107	70-116	0
Naphthalene	ug/L (ppb)	50	106	105	72-131	1
1,2,3-Trichlorobenzene	ug/L (ppb)	50	106	104	74-122	2

ENVIRONMENTAL CHEMISTS

Date of Report: 04/09/20 Date Received: 03/27/20

Project: POT - Parcel 40, F&BI 003444

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL/PRODUCT SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 003464-01 (Matrix Spike)

· · ·	1 /		Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Dichlorodifluoromethane	mg/kg (ppm)	2.5	< 0.5	4 vo	5 vo	10-142	22 vo
Chloromethane	mg/kg (ppm)	2.5	< 0.5	22	28	10-126	24 vo
Vinyl chloride	mg/kg (ppm)	2.5	<0.05	22	29	10-138	27 vo
Bromomethane Chloroethane	mg/kg (ppm) mg/kg (ppm)	$\frac{2.5}{2.5}$	<0.5 <0.5	43 42	47 48	10-163 10-176	9 13
Trichlorofluoromethane	mg/kg (ppm)	2.5	< 0.5	33	40	10-176	19
Acetone	mg/kg (ppm)	12.5	< 0.5	72	82	10-170	13
1,1-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	51	56	10-160	9
Hexane	mg/kg (ppm)	2.5	< 0.25	20	26	10-137	26 vo
Methylene chloride	mg/kg (ppm)	2.5	< 0.5	73	74	10-156	1
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	2.5	< 0.05	83	81	21-145	2
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	66	68	14-137	3
1,1-Dichloroethane 2,2-Dichloropropane	mg/kg (ppm) mg/kg (ppm)	$\frac{2.5}{2.5}$	<0.05 <0.05	76 70	75 71	19-140 10-158	1 1
cis-1,2-Dichloroethene	mg/kg (ppm)	$\frac{2.5}{2.5}$	< 0.05	80	78	25-135	3
Chloroform	mg/kg (ppm)	2.5	< 0.05	82	81	21-145	1
2-Butanone (MEK)	mg/kg (ppm)	12.5	<0.5	83	81	19-147	2
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	< 0.05	80	77	12-160	4
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	< 0.05	77	77	10-156	0
1,1-Dichloropropene	mg/kg (ppm)	2.5	< 0.05	73	75	17-140	3
Carbon tetrachloride	mg/kg (ppm)	2.5	< 0.05	76	77	9-164	1
Benzene	mg/kg (ppm)	$\frac{2.5}{2.5}$	< 0.03	80	79 82	29-129	1
Trichloroethene 1,2-Dichloropropane	mg/kg (ppm) mg/kg (ppm)	$\frac{2.5}{2.5}$	<0.02 <0.05	82 83	82 82	21-139 30-135	1
Bromodichloromethane	mg/kg (ppm)	2.5	< 0.05	89	87	23-155	2
Dibromomethane	mg/kg (ppm)	2.5	< 0.05	88	85	23-145	3
4-Methyl-2-pentanone	mg/kg (ppm)	12.5	< 0.5	89	83	24-155	7
cis-1,3-Dichloropropene	mg/kg (ppm)	2.5	< 0.05	83	81	28-144	2
Toluene	mg/kg (ppm)	2.5	< 0.05	74	72	35-130	3
trans-1,3-Dichloropropene	mg/kg (ppm)	2.5	< 0.05	70	69	26-149	1
1,1,2-Trichloroethane	mg/kg (ppm)	2.5	<0.05	71	71	10-205	0
2-Hexanone 1,3-Dichloropropane	mg/kg (ppm) mg/kg (ppm)	$\frac{12.5}{2.5}$	<0.5 <0.05	71 73	68 70	15-166 31-137	4
Tetrachloroethene	mg/kg (ppm)	2.5	<0.05	73	70 74	20-133	1
Dibromochloromethane	mg/kg (ppm)	2.5	< 0.05	78	76	28-150	3
1,2-Dibromoethane (EDB)	mg/kg (ppm)	2.5	< 0.05	73	71	28-142	3
Chlorobenzene	mg/kg (ppm)	2.5	< 0.05	77	74	32-129	4
Ethylbenzene	mg/kg (ppm)	2.5	< 0.05	76	74	32-137	3
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	2.5	< 0.05	75	73	31-143	3
m,p-Xylene	mg/kg (ppm)	5	<0.1	78	75 5.4	34-136	4
o-Xylene Styrene	mg/kg (ppm) mg/kg (ppm)	$\frac{2.5}{2.5}$	<0.05 <0.05	77 75	$\frac{74}{72}$	33-134 35-137	4
Isopropylbenzene	mg/kg (ppm)	2.5	< 0.05	80	78	31-142	3
Bromoform	mg/kg (ppm)	2.5	< 0.05	77	77	21-156	0
n-Propylbenzene	mg/kg (ppm)	2.5	< 0.05	74	71	23-146	4
Bromobenzene	mg/kg (ppm)	2.5	< 0.05	74	71	34-130	4
1,3,5-Trimethylbenzene	mg/kg (ppm)	2.5	< 0.05	73	71	18-149	3
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	2.5	< 0.05	71 69	67	28-140	6
1,2,3-Trichloropropane 2-Chlorotoluene	mg/kg (ppm) mg/kg (ppm)	$\frac{2.5}{2.5}$	<0.05 <0.05	69 73	67 70	25-144 $31-134$	3 4
4-Chlorotoluene	mg/kg (ppm)	2.5	< 0.05	73 72	70 70	31-136	3
tert-Butylbenzene	mg/kg (ppm)	2.5	< 0.05	77	74	30-137	4
1,2,4-Trimethylbenzene	mg/kg (ppm)	2.5	< 0.05	75	72	10-182	4
sec-Butylbenzene	mg/kg (ppm)	2.5	< 0.05	77	74	23-145	4
p-Isopropyltoluene	mg/kg (ppm)	2.5	< 0.05	77	76	21-149	1
1,3-Dichlorobenzene	mg/kg (ppm)	2.5	< 0.05	77	74	30-131	4
1,4-Dichlorobenzene	mg/kg (ppm)	2.5	<0.05	78 77	75 74	29-129	4
1,2-Dichlorobenzene 1,2-Dibromo-3-chloropropane	mg/kg (ppm) mg/kg (ppm)	$\frac{2.5}{2.5}$	<0.05 <0.5	77 68	74 66	31-132 11-161	4 3
1,2,4-Trichlorobenzene	mg/kg (ppm) mg/kg (ppm)	$\frac{2.5}{2.5}$	<0.25	80	78	22-142	3
Hexachlorobutadiene	mg/kg (ppm)	2.5	< 0.25	87	83	10-142	5
Naphthalene	mg/kg (ppm)	2.5	< 0.05	72	70	14-157	3
1,2,3-Trichlorobenzene	mg/kg (ppm)	2.5	< 0.25	77	74	20-144	4

ENVIRONMENTAL CHEMISTS

Date of Report: 04/09/20 Date Received: 03/27/20

Project: POT - Parcel 40, F&BI 003444

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF PRODUCT SAMPLES FOR VOLATILES BY EPA METHOD 8260D

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Dichlorodifluoromethane	mg/kg (ppm)	2.5	73	10-146
Chloromethane	mg/kg (ppm)	2.5	86	27-133
Vinyl chloride	mg/kg (ppm)	2.5	94	22-139
Bromomethane	mg/kg (ppm)	2.5	102	38-114
Chloroethane	mg/kg (ppm)	2.5	109	9-163
Trichlorofluoromethane	mg/kg (ppm)	2.5	109	10-196
Acetone	mg/kg (ppm)	12.5	110	52-141
1,1-Dichloroethene	mg/kg (ppm)	2.5	111	47-128
Hexane Methylene chloride	mg/kg (ppm)	$\frac{2.5}{2.5}$	99 109	43-142 42-132
Methyl t-butyl ether (MTBE)	mg/kg (ppm) mg/kg (ppm)	2.5	107	60-123
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	107	67-129
1,1-Dichloroethane	mg/kg (ppm)	2.5	110	68-115
2,2-Dichloropropane	mg/kg (ppm)	2.5	112	52-170
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	108	72-127
Chloroform	mg/kg (ppm)	2.5	108	66-120
2-Butanone (MEK)	mg/kg (ppm)	12.5	106	72-127
1.2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	104	56-135
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	113	62-131
1,1-Dichloropropene	mg/kg (ppm)	2.5	109	69-128
Carbon tetrachloride	mg/kg (ppm)	2.5	115	60-139
Benzene	mg/kg (ppm)	2.5	109	68-114
Trichloroethene	mg/kg (ppm)	2.5	110	64-117
1,2-Dichloropropane	mg/kg (ppm)	2.5	109	72-127
Bromodichloromethane	mg/kg (ppm)	2.5	112	72-130
Dibromomethane	mg/kg (ppm)	2.5	112	70-120
4-Methyl-2-pentanone	mg/kg (ppm)	12.5	108	45-145
cis-1,3-Dichloropropene	mg/kg (ppm)	2.5	106	75-136
Toluene	mg/kg (ppm)	2.5	100	66-126
trans-1,3-Dichloropropene	mg/kg (ppm)	2.5	95	72-132
1,1,2-Trichloroethane	mg/kg (ppm)	2.5	93	75-113
2-Hexanone	mg/kg (ppm)	12.5	95	33-152
1,3-Dichloropropane	mg/kg (ppm)	2.5	95	72-130
Tetrachloroethene	mg/kg (ppm)	2.5	100	72-114
Dibromochloromethane	mg/kg (ppm)	2.5	105	74-125
1,2-Dibromoethane (EDB)	mg/kg (ppm)	2.5	97	74-132
Chlorobenzene	mg/kg (ppm)	2.5	99	76-111
Ethylbenzene	mg/kg (ppm)	2.5	100	64-123
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	2.5	98	69-135
m,p-Xylene	mg/kg (ppm)	5	100	78-122
o-Xylene	mg/kg (ppm)	2.5	99	77-124
Styrene Isopropylbenzene	mg/kg (ppm) mg/kg (ppm)	$\frac{2.5}{2.5}$	97 102	74-126 76-127
Bromoform	mg/kg (ppm)	2.5	102	56-132
n-Propylbenzene	mg/kg (ppm)	$\frac{2.5}{2.5}$	97	74-124
Bromobenzene	mg/kg (ppm)	2.5	95	74-124 72-122
1,3,5-Trimethylbenzene	mg/kg (ppm)	2.5	95	76-126
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	2.5	92	56-143
1.2.3-Trichloropropane	mg/kg (ppm)	2.5	92	61-137
2-Chlorotoluene	mg/kg (ppm)	2.5	95	74-121
4-Chlorotoluene	mg/kg (ppm)	2.5	94	75-122
tert-Butylbenzene	mg/kg (ppm)	2.5	98	73-130
1,2,4-Trimethylbenzene	mg/kg (ppm)	2.5	97	76-125
sec-Butylbenzene	mg/kg (ppm)	2.5	99	71-130
p-Isopropyltoluene	mg/kg (ppm)	2.5	100	70-132
1,3-Dichlorobenzene	mg/kg (ppm)	2.5	97	75-121
1,4-Dichlorobenzene	mg/kg (ppm)	2.5	99	74-117
1,2-Dichlorobenzene	mg/kg (ppm)	2.5	98	76-121
		2.5	91	58-138
1,2-Dibromo-3-chloropropane	mg/kg (ppm)			
1,2-Dibromo-3-chloropropane 1,2,4-Trichlorobenzene	mg/kg (ppm) mg/kg (ppm)	2.5	100	
	mg/kg (ppm) mg/kg (ppm) mg/kg (ppm)			64-135 50-153
1,2,4-Trichlorobenzene	mg/kg (ppm)	2.5	100	64-135

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Friedman & Bruya Michael Erdahl 3012 16th Ave. W. Seattle, WA 98119

RE: 003444

Work Order Number: 2003438

April 06, 2020

Attention Michael Erdahl:

Fremont Analytical, Inc. received 2 sample(s) on 3/30/2020 for the analyses presented in the following report.

Volatile Petroleum Hydrocarbons by NWVPH

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes
Project Manager

DoD/ELAP Certification #L17-135, ISO/IEC 17025:2005 ORELAP Certification: WA 100009-007 (NELAP Recognized)

Date: 04/06/2020

CLIENT: Friedman & Bruya Work Order Sample Summary

Project: 003444 **Work Order:** 2003438

 Lab Sample ID
 Client Sample ID
 Date/Time Collected
 Date/Time Received

 2003438-001
 GEI-MW1-0320
 03/26/2020 11:40 AM
 03/30/2020 10:26 AM

 2003438-002
 GEI-MW9-0320
 03/26/2020 9:40 AM
 03/30/2020 10:26 AM

Case Narrative

WO#: **2003438**Date: **4/6/2020**

CLIENT: Friedman & Bruya

Project: 003444

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: **2003438**

Date Reported: 4/6/2020

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Analytical Report

Work Order: **2003438**Date Reported: **4/6/2020**

Client: Friedman & Bruya Collection Date: 3/26/2020 11:40:00 AM

Project: 003444

Lab ID: 2003438-001 **Matrix:** Water

Client Sample ID: GEI-MW1-0320

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Volatile Petroleum Hydrocarbon	s by NWVPH			Bato	h ID: 27	970 Analyst: CR
Aliphatic Hydrocarbon (C5-C6)	ND	40.0		μg/L	1	4/3/2020 12:13:41 AM
Aliphatic Hydrocarbon (C6-C8)	87.9	20.0		μg/L	1	4/3/2020 12:13:41 AM
Aliphatic Hydrocarbon (C8-C10)	37.2	20.0		μg/L	1	4/3/2020 12:13:41 AM
Aliphatic Hydrocarbon (C10-C12)	231	20.0		μg/L	1	4/3/2020 12:13:41 AM
Aromatic Hydrocarbon (C8-C10)	138	50.0		μg/L	1	4/3/2020 12:13:41 AM
Aromatic Hydrocarbon (C10-C12)	505	20.0		μg/L	1	4/3/2020 12:13:41 AM
Aromatic Hydrocarbon (C12-C13)	896	20.0		μg/L	1	4/3/2020 12:13:41 AM
Benzene	35.7	20.0		μg/L	1	4/3/2020 12:13:41 AM
Toluene	ND	20.0		μg/L	1	4/3/2020 12:13:41 AM
Ethylbenzene	ND	20.0		μg/L	1	4/3/2020 12:13:41 AM
m,p-Xylene	ND	40.0		μg/L	1	4/3/2020 12:13:41 AM
o-Xylene	ND	20.0		μg/L	1	4/3/2020 12:13:41 AM
Naphthalene	ND	20.0		μg/L	1	4/3/2020 12:13:41 AM
Methyl tert-butyl ether (MTBE)	ND	20.0		μg/L	1	4/3/2020 12:13:41 AM
Surr: 1,4-Difluorobenzene	99.5	65 - 140		%Rec	1	4/3/2020 12:13:41 AM
Surr: Bromofluorobenzene	106	65 - 140		%Rec	1	4/3/2020 12:13:41 AM

Analytical Report

Work Order: **2003438**Date Reported: **4/6/2020**

Client: Friedman & Bruya Collection Date: 3/26/2020 9:40:00 AM

Project: 003444

Lab ID: 2003438-002 **Matrix:** Water

Client Sample ID: GEI-MW9-0320

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Volatile Petroleum Hydrocarbon	s by NWVPH			Bato	h ID: 27	970 Analyst: CR
Aliphatic Hydrocarbon (C5-C6)	ND	40.0		μg/L	1	4/2/2020 10:48:44 PM
Aliphatic Hydrocarbon (C6-C8)	ND	20.0		μg/L	1	4/2/2020 10:48:44 PM
Aliphatic Hydrocarbon (C8-C10)	29.3	20.0		μg/L	1	4/2/2020 10:48:44 PM
Aliphatic Hydrocarbon (C10-C12)	172	20.0		μg/L	1	4/2/2020 10:48:44 PM
Aromatic Hydrocarbon (C8-C10)	ND	50.0		μg/L	1	4/2/2020 10:48:44 PM
Aromatic Hydrocarbon (C10-C12)	343	20.0		μg/L	1	4/2/2020 10:48:44 PM
Aromatic Hydrocarbon (C12-C13)	461	20.0		μg/L	1	4/2/2020 10:48:44 PM
Benzene	ND	20.0		μg/L	1	4/2/2020 10:48:44 PM
Toluene	ND	20.0		μg/L	1	4/2/2020 10:48:44 PM
Ethylbenzene	ND	20.0		μg/L	1	4/2/2020 10:48:44 PM
m,p-Xylene	ND	40.0		μg/L	1	4/2/2020 10:48:44 PM
o-Xylene	ND	20.0		μg/L	1	4/2/2020 10:48:44 PM
Naphthalene	ND	20.0		μg/L	1	4/2/2020 10:48:44 PM
Methyl tert-butyl ether (MTBE)	ND	20.0		μg/L	1	4/2/2020 10:48:44 PM
Surr: 1,4-Difluorobenzene	102	65 - 140		%Rec	1	4/2/2020 10:48:44 PM
Surr: Bromofluorobenzene	102	65 - 140		%Rec	1	4/2/2020 10:48:44 PM

Date: 4/6/2020

Work Order: 2003438

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

Volatile Petroleum Hydrocarbons by NWVPH

Project: 003444	•							Volatile	Petroleum	Hydrocarl	oons by I	NWVPH
Sample ID: LCS-27970	SampType	: LCS			Units: µg/L		Prep Da	te: 4/2/202	0	RunNo: 584	158	
Client ID: LCSW	Batch ID:	27970					Analysis Da	te: 4/2/202	0	SeqNo: 116	8159	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (C5-C6)		670	40.0	600.0	0	112	70	130				
Aliphatic Hydrocarbon (C6-C8)		200	20.0	200.0	0	100	70	130				
Aliphatic Hydrocarbon (C8-C10)		219	20.0	200.0	0	109	70	130				
Aliphatic Hydrocarbon (C10-C12)		211	20.0	200.0	0	105	70	130				
Aromatic Hydrocarbon (C8-C10)		914	50.0	800.0	0	114	70	130				
Aromatic Hydrocarbon (C10-C12)		204	20.0	200.0	0	102	70	130				
Aromatic Hydrocarbon (C12-C13)		171	20.0	200.0	0	85.6	70	130				
Benzene		228	20.0	200.0	0	114	70	130				
Toluene		230	20.0	200.0	0	115	70	130				
Ethylbenzene		229	20.0	200.0	0	114	70	130				
m,p-Xylene		467	40.0	400.0	0	117	70	130				
o-Xylene		231	20.0	200.0	0	116	70	130				
Naphthalene		171	20.0	200.0	0	85.4	70	130				
Methyl tert-butyl ether (MTBE)		222	20.0	200.0	0	111	70	130				
Surr: 1,4-Difluorobenzene		49.6		50.00		99.2	65	140				
Surr: Bromofluorobenzene		49.6		50.00		99.1	65	140				
Surr: Bromofluorobenzene		49.6		50.00		99.1	65	140				

Sample ID: LCSD-27970	SampType:	LCSD			Units: µg/L		Prep Dat	te: 4/2/202	0	RunNo: 584	158	
Client ID: LCSW02	Batch ID:	27970					Analysis Da	te: 4/2/202	0	SeqNo: 116	8160	
Analyte	Re	esult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (C5-C6)		642	40.0	600.0	0	107	70	130	669.6	4.24	20	
Aliphatic Hydrocarbon (C6-C8)		207	20.0	200.0	0	103	70	130	200.0	3.23	20	
Aliphatic Hydrocarbon (C8-C10)		221	20.0	200.0	0	111	70	130	218.5	1.14	20	
Aliphatic Hydrocarbon (C10-C12)		193	20.0	200.0	0	96.7	70	130	210.9	8.69	20	
Aromatic Hydrocarbon (C8-C10)		875	50.0	800.0	0	109	70	130	914.3	4.41	20	
Aromatic Hydrocarbon (C10-C12)		193	20.0	200.0	0	96.3	70	130	203.9	5.67	20	
Aromatic Hydrocarbon (C12-C13)		209	20.0	200.0	0	105	70	130	171.2	20.0	20	R
Benzene		217	20.0	200.0	0	109	70	130	227.9	4.83	20	
Toluene		219	20.0	200.0	0	109	70	130	229.7	4.82	20	

Page 7 of 11 Original

Date: 4/6/2020

Work Order: 2003438

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

003444

Volatile Petroleum Hydrocarbons by NWVPH

Sample ID: LCSD-27970	SampType: LCSD			Units: µg/L		Prep Da	te: 4/2/202	20	RunNo: 58 4	458	
Client ID: LCSW02	Batch ID: 27970					Analysis Da	te: 4/2/202	0	SeqNo: 1168160		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Ethylbenzene	221	20.0	200.0	0	111	70	130	228.9	3.41	20	
m,p-Xylene	446	40.0	400.0	0	111	70	130	466.6	4.62	20	
o-Xylene	221	20.0	200.0	0	111	70	130	231.3	4.39	20	
Naphthalene	175	20.0	200.0	0	87.3	70	130	170.7	2.31	20	
Methyl tert-butyl ether (MTBE)	210	20.0	200.0	0	105	70	130	221.7	5.20	20	
Surr: 1,4-Difluorobenzene	48.1		50.00		96.3	65	140		0		
Surr: Bromofluorobenzene	48.4		50.00		96.9	65	140		0		
NOTES:											

NOTES:

Project:

R - High RPD observed, spike recovery is within range.

Sample ID: MB-27970	SampType: M	BLK		Units: µg/L		Prep Da	te: 4/2/20 2	20	RunNo: 58 4	158	
Client ID: MBLKW	Batch ID: 2	7970				Analysis Da	te: 4/2/20 2	20	SeqNo: 116	8161	
Analyte	Res	ult RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (C5-C6)	N	ND 40.0		0	0						
Aliphatic Hydrocarbon (C6-C8)	١	ND 20.0		0	0						
Aliphatic Hydrocarbon (C8-C10)	N	ND 20.0		0	0						
Aliphatic Hydrocarbon (C10-C12)	N	ND 20.0		0	0						
Aromatic Hydrocarbon (C8-C10)	١	ND 50.0		0	0						
Aromatic Hydrocarbon (C10-C12)	1	ND 20.0		0	0						
Aromatic Hydrocarbon (C12-C13)	1	ND 20.0		0	0						
Benzene	1	ND 20.0		0	0						
Toluene	1	ND 20.0		0	0						
Ethylbenzene	1	ND 20.0		0	0						
m,p-Xylene	1	ND 40.0		0	0						
o-Xylene	١	ND 20.0		0	0						
Naphthalene	١	ND 20.0		0	0						
Methyl tert-butyl ether (MTBE)	١	ND 20.0		0	0						
Surr: 1,4-Difluorobenzene	50).4	50.00		101	65	140				
Surr: Bromofluorobenzene	51	.2	50.00		102	65	140				

Original Page 8 of 11

Date: 4/6/2020

Work Order: 2003438

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

Volatile Petroleum Hydrocarbons by NWVPH

Project: 003444						Volatile	Petroleum	Hydrocark	oons by N	NWVPH
Sample ID: 2003438-002ADUP	SampType: DUP			Units: µg/L		Prep Date: 4/2/2 ()20	RunNo: 584	158	
Client ID: GEI-MW9-0320	Batch ID: 27970					Analysis Date: 4/2/20	20	SeqNo: 116	8155	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimi	t RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (C5-C6)	ND	40.0		0	0		0		25	
Aliphatic Hydrocarbon (C6-C8)	ND	20.0		0	0		0		25	
Aliphatic Hydrocarbon (C8-C10)	ND	20.0		0	0		29.26	50.3	25	
Aliphatic Hydrocarbon (C10-C12)	181	20.0		0	0		171.7	5.41	25	
Aromatic Hydrocarbon (C8-C10)	ND	50.0		0	0		0		25	
Aromatic Hydrocarbon (C10-C12)	299	20.0		0	0		343.0	13.7	25	
Aromatic Hydrocarbon (C12-C13)	453	20.0		0	0		461.4	1.79	25	
Benzene	ND	20.0		0	0		0		25	
Toluene	ND	20.0		0	0		0		25	
Ethylbenzene	ND	20.0		0	0		0		25	
m,p-Xylene	ND	40.0		0	0		0		25	
o-Xylene	ND	20.0		0	0		0		25	
Naphthalene	ND	20.0		0	0		0		25	
Methyl tert-butyl ether (MTBE)	ND	20.0		0	0		0		25	
Surr: 1,4-Difluorobenzene	52.1		50.00		104	65 140)	0		
Surr: Bromofluorobenzene	51.9		50.00		104	65 140)	0		

Page 9 of 11 Original

Sample Log-In Check List

Date Received: 3/30/2020 10:26:00 AM	С	lient Name:	FB	Work O	rder Num	ber: 2003438		
1. Is Chain of Custody complete? 2. How was the sample delivered? FedEx	Lo	ogged by:	Carissa True	Date Re	eceived:	3/30/2020	10:26:00 AM	
2. How was the sample delivered? FedEx Log In 3. Coolers are present? Yes	<u>Cha</u>	in of Cust	<u>ody</u>					
A. Shipping container/cooler in good condition? 4. Shipping container/cooler in good condition? 5. Custody Seals present on shipping container/cooler? 6. Was an attempt made to cool the samples? 7. Were all items received at a temperature of >2°C to 6°C 8. Sample(s) in proper container(s)? 9. Sufficient sample volume for indicated test(s)? 10. Are samples properly preserved? 11. Was preservative added to bottles? 12. Is there headspace in the VOA vials? 13. Did all samples containers arrive in good condition(unbroken)? 14. Does paperwork match bottle labels? 15. Are matrices correctly identified on Chain of Custody? 16. Is it clear what analyses were requested? 17. Were all holding times able to be met? 18. Was client notified of all discrepancies with this order? 19. Person Notified: 10. Date: 10. Person Notified: 10. Person Notified: 10. Date: 11. Person Notified: 12. See Mail Phone Fax In Person 13. Regarding:	1.	Is Chain of C	ustody complete?	Yes	✓	No \square	Not Present	
3. Coolers are present? Yes ☑ No ☐ NA ☐ 4. Shipping container/cooler in good condition? Yes ☑ No ☐ 5. Custody Seals present on shipping container/cooler? (Refer to comments for Custody Seals not intact) Yes ☑ No ☐ NA ☐ 6. Was an attempt made to cool the samples? Yes ☑ No ☐ NA ☐ 7. Were all items received at a temperature of >2°C to 6°C * Yes ☑ No ☐ NA ☐ 8. Sample(s) in proper container(s)? Yes ☑ No ☐ NA ☐ 9. Sufficient sample volume for indicated test(s)? Yes ☑ No ☐ 10. Are samples properly preserved? Yes ☑ No ☐ 11. Was preservative added to bottles? Yes ☑ No ☑ 12. Is there headspace in the VOA vials? Yes ☑ No ☑ 13. Did all samples containers arrive in good condition(unbroken)? Yes ☑ No ☐ 14. Does paperwork match bottle labels? Yes ☑ No ☐ 15. Are matrices correctly identified on Chain of Custody? Yes ☑ No ☐ 16. Is it clear what analyses were requested? Yes ☑ No ☐ 17. Were all holding times able to be met? Yes ☑ No ☐ Special Handling (if applicable) 18. Was client notified: ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐	2.	How was the	sample delivered?	<u>FedE</u>	<u> </u>			
3. Coolers are present? Yes ☑ No ☐ NA ☐ 4. Shipping container/cooler in good condition? Yes ☑ No ☐ 5. Custody Seals present on shipping container/cooler? (Refer to comments for Custody Seals not intact) Yes ☑ No ☐ NA ☐ 6. Was an attempt made to cool the samples? Yes ☑ No ☐ NA ☐ 7. Were all items received at a temperature of >2°C to 6°C * Yes ☑ No ☐ NA ☐ 8. Sample(s) in proper container(s)? Yes ☑ No ☐ NA ☐ 9. Sufficient sample volume for indicated test(s)? Yes ☑ No ☐ 10. Are samples properly preserved? Yes ☑ No ☐ 11. Was preservative added to bottles? Yes ☑ No ☑ 12. Is there headspace in the VOA vials? Yes ☑ No ☑ 13. Did all samples containers arrive in good condition(unbroken)? Yes ☑ No ☐ 14. Does paperwork match bottle labels? Yes ☑ No ☐ 15. Are matrices correctly identified on Chain of Custody? Yes ☑ No ☐ 16. Is it clear what analyses were requested? Yes ☑ No ☐ 17. Were all holding times able to be met? Yes ☑ No ☐ Special Handling (if applicable) 18. Was client notified: ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐	Log	<u>ı In</u>						
5. Custody Seals present on shipping container/cooler? (Refer to comments for Custody Seals not intact) 6. Was an attempt made to cool the samples? 7. Were all items received at a temperature of >2°C to 6°C * Yes No NA NA NA NA NA NA NA NA NA	_		present?	Yes	✓	No 🗌	NA \square	
(Refer to comments for Custody Seals not intact) 6. Was an attempt made to cool the samples? Yes No NA NA NA NA NA NA NA NA NA	4.	Shipping con	tainer/cooler in good condition?	Yes	✓	No 🗌		
7. Were all items received at a temperature of >2°C to 6°C * Yes No No NA 8. Sample(s) in proper container(s)?	5.			Yes		No 🗸	Not Required \square	
8. Sample(s) in proper container(s)? 9. Sufficient sample volume for indicated test(s)? 10. Are samples properly preserved? 11. Was preservative added to bottles? 12. Is there headspace in the VOA vials? 13. Did all samples containers arrive in good condition(unbroken)? 14. Does paperwork match bottle labels? 15. Are matrices correctly identified on Chain of Custody? 16. Is it clear what analyses were requested? 17. Were all holding times able to be met? Special Handling (if applicable) 18. Was client notified of all discrepancies with this order? Person Notified: By Whom: Regarding: No No No NA NA Person No NA Person Regarding:	6.	Was an atter	npt made to cool the samples?	Yes	✓	No 🗌	NA \square	
9. Sufficient sample volume for indicated test(s)? 10. Are samples properly preserved? 11. Was preservative added to bottles? 12. Is there headspace in the VOA vials? 13. Did all samples containers arrive in good condition(unbroken)? 14. Does paperwork match bottle labels? 15. Are matrices correctly identified on Chain of Custody? 16. Is it clear what analyses were requested? 17. Were all holding times able to be met? 18. Was client notified of all discrepancies with this order? 19. Ves No No No No No No No No No N	7.	Were all item	s received at a temperature of >2°C to 6°C *	Yes	✓	No 🗆	NA \square	
10. Are samples properly preserved? 11. Was preservative added to bottles? Yes No No No NA	8.	Sample(s) in	proper container(s)?	Yes	✓	No 🗌		
11. Was preservative added to bottles? Yes No No NA 12. Is there headspace in the VOA vials? Yes No No NA 13. Did all samples containers arrive in good condition(unbroken)? Yes No No 14. Does paperwork match bottle labels? Yes No No 15. Are matrices correctly identified on Chain of Custody? Yes No No 16. Is it clear what analyses were requested? Yes No No 17. Were all holding times able to be met? Special Handling (if applicable) 18. Was client notified of all discrepancies with this order? Yes No No NA Person Notified: By Whom: Regarding:	9.	Sufficient sar	nple volume for indicated test(s)?	Yes	✓	No 🗌		
12. Is there headspace in the VOA vials? 13. Did all samples containers arrive in good condition(unbroken)? 14. Does paperwork match bottle labels? 15. Are matrices correctly identified on Chain of Custody? 16. Is it clear what analyses were requested? 17. Were all holding times able to be met? Special Handling (if applicable) 18. Was client notified of all discrepancies with this order? Person Notified: By Whom: Regarding: No No NA NA NA Phone Fax In Person Regarding:	10.	Are samples	properly preserved?	Yes	✓	No 🗌		
13. Did all samples containers arrive in good condition(unbroken)? Yes No 14. Does paperwork match bottle labels? Yes No 15. Are matrices correctly identified on Chain of Custody? Yes No 16. Is it clear what analyses were requested? Yes No 17. Were all holding times able to be met? Yes No 18. Was client notified of all discrepancies with this order? Yes No 18. Was client notified of all discrepancies with this order? Yes No 18. Was client notified: No 18. Was client	11.	Was preserv	ative added to bottles?	Yes		No 🗸	NA 🗆	
14. Does paperwork match bottle labels? Yes V No 15. Are matrices correctly identified on Chain of Custody? Yes No 16. Is it clear what analyses were requested? Yes No 17. Were all holding times able to be met? Special Handling (if applicable) 18. Was client notified of all discrepancies with this order? Yes No No NA P Person Notified: By Whom: Regarding:	12.	Is there head	space in the VOA vials?	Yes		No 🗸	NA \square	
15. Are matrices correctly identified on Chain of Custody? 16. Is it clear what analyses were requested? 17. Were all holding times able to be met? Special Handling (if applicable) 18. Was client notified of all discrepancies with this order? Person Notified: By Whom: Regarding: No No No No No No No No No N	13.	Did all sampl	es containers arrive in good condition(unbroken)?	Yes	✓	No 🗌		
16. Is it clear what analyses were requested? 17. Were all holding times able to be met? Special Handling (if applicable) 18. Was client notified of all discrepancies with this order? Person Notified: By Whom: Regarding: No No NA Person No NA No NA NA NA NA NA NA NA	14.	Does paperw	ork match bottle labels?	Yes	✓	No 🗌		
16. Is it clear what analyses were requested? 17. Were all holding times able to be met? Special Handling (if applicable) 18. Was client notified of all discrepancies with this order? Person Notified: By Whom: Regarding: No No NA Person No NA No NA NA NA NA NA NA NA	15.	Are matrices	correctly identified on Chain of Custody?	Yes	✓	No 🗌		
Special Handling (if applicable) 18. Was client notified of all discrepancies with this order? Person Notified: By Whom: Regarding: Date: Via: eMail Phone Fax In Person Regarding:				Yes	✓	No 🗌		
18. Was client notified of all discrepancies with this order? Person Notified: By Whom: Regarding: Date: Via: eMail Phone Fax In Person	17.	Were all hold	ing times able to be met?	Yes	✓	No 🗌		
Person Notified: Date: By Whom: Via: eMail Phone Fax In Person Regarding:	Spe	cial Handl	ing (if applicable)					
By Whom: Via: eMail Phone Fax In Person Regarding:	_			Yes		No 🗌	NA 🗹	
Regarding:		Person	Notified: Date	: [
		By Who	m: Via:	eMa	il 🗌 Pl	none 🗌 Fax 🏻	In Person	
Client Instructions:		Regardi	ng:					
		Client Ir	nstructions:					
19. Additional remarks:								

Item Information

Item #	Temp ⁰C
Cooler 1	0.5
Sample 1	0.6

* Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

SUBCONTRACT SAMPLE CHAIN OF CUSTODY SUBCONTRACTER Fant

Page 11 of 11

			SUBCC	SUBCONTRACT SAMPLE CHAIN OF	TSAN	APLE	CHA	NO		CUSTODY	X	00%	202220	0		
Send Report To Mi	ichael	Michael Erdahl		SU	SUBCONTRACTER	TRACT	ER T	Family	+		•		TI	Page #_	Page # 1 of 1	of
2.20	iedma	Friedman and Bruya, Inc	Inc.	PR	PROJECT NAME/NO.	NAMI	NO.			PO#	#		Standard TAT	ard TA	H	
	12 16t	3012 16th Ave W			Ģ	PH4500	土		_	8-162	2		Rush ch	arges a	Rush charges authorized by:	by:
ıte, ZIP_	attle, V	Seattle, WA 98119		RE	REMARKS	Sa							Dispos	SAMPI se after	SAMPLE DISPOSAL Dispose after 30 days	SAL
Phone # (206) 285-8282 merdahl@friedmanandbruya.com	282 n	nerdahl@frie	dmanandbruy	a.com									☐ Return samples ☐ Will call with in	n samp all with	Return samples Will call with instructions	ons
								<i>F</i>	ANALYS	ALYSES REQUESTED	QUE	STED		Ц		
Sample ID	Lab ID	Date Sampled	Time Sampled	Matrix	# of jars	Dioxins/Furans	EPH	VPH							N _o	Notes
GET-MW1-0320		3/26/20	1140	2018	12			×		1						
CET-MW9-0320		3/26/70	0440	water.	82			X	_			T		L		
					to the											
Friedman & Bruya, Inc. 3012 16th Avenue West	Inc.	Reliarquished by	SIGNATURE		Mich	PRIN Michael Erdahl	PRINT dahl	NAME		দ	COMPANY Friedman & Bruya	COMPANY nan & Bruy	ANY Bruya	7	DATE	TIME
Seattle, WA 98119-2029	129	Received by:	CAR		80	to	9	hason	2	to	TA	1.2		vi	130/20	1024
Ph. (206) 285-8282		Relinquished by:	À.													
Fax (206) 283-5044		Received by:								\dashv				\dashv		
T am (200) =00 00 -1		6			_									_		

Seattle, WA 98119-2029 Friedman & Bruya, Inc. GFT-MW1-0520 Ph. (206) 285-8282 3012 16th Avenue West GEI-MW39-0320 GET-MW9-0320 GET- XX8-0320 GEI-MWS-0320 Company Crete City, State, ZIP Seattle Address 108 S. Washington St. TTC-RW1-0320 Phone 206. 799. 2744 Email crete consulting.com Report To Ms. Jamie Stevens Sample ID 003444 CORSUL Received by: Relings/shift by Relinquished by: Received by: jourie, Stevens @ WW 62 φ W 0 OY A-E 06 A-B Lab ID からか SIGNATURE 3.26.20 3.24.20 3.26,20 3.26.20 13:00 3.26.20 14:00 3.26.20 Sampled W 0 0 State H 04:40 SAMPLE CHAIN OF CUSTODY 12:02 14:30 Sampled SAMPLERS (signature) Time Project specific RLs? (Yes) / No REMARKS PROJECT NAME Pot- Parcel 40 , D Sample ع D Type 3 3 3 多 5 Jars # of W PRINT NAME W M Biarco Cet INVOICE TO ANALYSES REQUESTED X X VOCs EPA 8260 >又 P0# PAHS EPA M € 03-27-20 FYB, HY からい PCBs EPA 8082 COMPANY X >Samples received at 200 □ Archive samples Default: Dispose after 30 days Rush charges authorized by: RUSH Standard turnaround Page# TURNAROUND TIME SAMPLE DISPOSAL 35:3/00/12:28 のなる presactionobatodie D: bromonethane 225 及を含 SAMPLE STC-AWI-0320 = 0.81 ma = 0.27 Mg =0.56 mg/L Carbon Tetrachlor DATE Notes PRODUCT 12:27 HMIL EW

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

June 24, 2020

Grant Hainsworth, Project Manager Crete Consulting 108 S. Washington St., Suite 300 Seattle, WA 98104

Dear Mr Hainsworth:

Included are the results from the testing of material submitted on June 13, 2020 from the PoT-Parcel 40, F&BI 006216 project. There are 21 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Jamie Stevens CTC0624R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on June 13, 2020 by Friedman & Bruya, Inc. from the Crete Consulting PoT-Parcel 40, F&BI 006216 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Crete Consulting
006216 -01	SB-0210-0620
006216 -02	SB-0310-10
006216 -03	SB-01-09
006216 -04	SB-01-0620
006216 -05	SB-02-09.5
006216 -06	SB-02-0620
006216 -07	SB-03-10
006216 -08	SB-03-0620
006216 -09	SB-04-08
006216 -10	SB-04-0620
006216 -11	SB-05-09.5
006216 -12	SB-05-0620
006216 -13	SB-06-09
006216 -14	SB-06-0620
006216 -15	SB-07-07.5
006216 -16	SB-07-0620
006216 -17	SB-08-09
006216 -18	SB-08-0620
006216 -19	SB-08D-0620
006216 -20	SB-09-07.5
006216 -21	SB-09-0620
006216 -22	Drum-2
006216 -23	SB-01D-0620

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 06/24/20 Date Received: 06/13/20

Project: PoT-Parcel 40, F&BI 006216

Date Extracted: 06/19/20 Date Analyzed: 06/19/20

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	Benzene	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (% Recovery) (Limit 50-132)
SB-0310-10 006216-02 1/50	1.3	5.0	13	17	2,000	91
SB-01-09 006216-03 1/10	< 0.2	< 0.2	7.0	24	3,000	95
SB-02-09.5 006216-05 1/10	< 0.2	< 0.2	1.6	2.3	600	86
SB-03-10 006216-07 1/50	<1	3.8	20	14	2,400	89
SB-04-08 006216-09 1/10	< 0.2	< 0.2	7.9	20	2,800	101
SB-05-09.5 006216-11 1/5	<0.1	<0.1	1.7	2.1	600	86
Drum-2 006216-22	<0.02	< 0.02	0.70	0.91	330	98
Method Blank _{00-1314 MB2}	< 0.02	< 0.02	< 0.02	<0.06	<5	89

ENVIRONMENTAL CHEMISTS

Date of Report: 06/24/20 Date Received: 06/13/20

Project: PoT-Parcel 40, F&BI 006216

Date Extracted: 06/18/20

Date Analyzed: 06/18/20, 06/19/20 and 06/22/20

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Sample ID Laboratory ID	Benzene	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (% Recovery) (Limit 52-124)
SB-0210-0620 006216-01	<1	1.1	<1	4.0	830	85
SB-01-0620 006216-04 1/10	22	<10	25	<30	4,100	82
SB-02-0620 006216-06	<1	<1	1.0	4.2	1,800	80
SB-03-0620 006216-08	<1	10	27	<3	4,100	97
SB-04-0620 006216-10	81	4.6	19	14	1,600	86
SB-05-0620 006216-12	1.1	3.4	<1	38	7,500	90
SB-06-0620 006216-14	<1	<1	1.5	<3	750	83
SB-07-0620 006216-16	<1	<1	<1	<3	<100	90
SB-08-0620 006216-18	<1	<1	<1	<3	<100	89
SB-08D-0620 006216-19	<1	<1	<1	<3	<100	90

ENVIRONMENTAL CHEMISTS

Date of Report: 06/24/20 Date Received: 06/13/20

Project: PoT-Parcel 40, F&BI 006216

Date Extracted: 06/18/20

Date Analyzed: 06/18/20, 06/19/20 and 06/22/20

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Sample ID Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (% Recovery) (Limit 52-124)
SB-09-0620 006216-21	3.2	<1	11	9.3	3,500	93
SB-01D-0620 006216-23	<1	<1	<1	<3	<100	89
Method Blank ₀₀₋₁₃₁₃ MB	<1	<1	<1	<3	<100	93

ENVIRONMENTAL CHEMISTS

Date of Report: 06/24/20 Date Received: 06/13/20

Project: PoT-Parcel 40, F&BI 006216

Date Extracted: 06/15/20 Date Analyzed: 06/15/20

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	$rac{ ext{Diesel Range}}{ ext{(C}_{10} ext{-C}_{25})}$	$rac{ ext{Motor Oil Range}}{ ext{(C}_{25} ext{-C}_{36} ext{)}}$	Surrogate (% Recovery) (Limit 53-144)
SB-0310-10 006216-02	40,000	4,700 x	122
SB-01-09 006216-03	23,000	1,600 x	121
SB-02-09.5 006216-05	3,800	390 x	90
SB-03-10 006216-07	27,000	3,100 x	109
SB-04-08 006216-09	15,000	1,100 x	109
SB-05-09.5 006216-11	9,500	750 x	89
SB-06-09 006216-13	15,000	490 x	107
SB-07-07.5 006216-15	<50	<250	87
SB-08-09 006216-17	<50	<250	86
SB-09-07.5 006216-20	18,000	610 x	102

ENVIRONMENTAL CHEMISTS

Date of Report: 06/24/20 Date Received: 06/13/20

Project: PoT-Parcel 40, F&BI 006216

Date Extracted: 06/15/20 Date Analyzed: 06/15/20

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	$rac{ ext{Diesel Range}}{ ext{(C}_{10} ext{-C}_{25})}$	$rac{ ext{Motor Oil Range}}{ ext{(C}_{25} ext{-C}_{36} ext{)}}$	Surrogate (% Recovery) (Limit 53-144)
Drum-2 006216-22	1,200	<250	85
Method Blank	<50	<250	96

ENVIRONMENTAL CHEMISTS

Date of Report: 06/24/20 Date Received: 06/13/20

Project: PoT-Parcel 40, F&BI 006216

Date Extracted: 06/15/20

Date Analyzed: 06/16/20 and 06/18/20

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx Sample Extracts Passed Through a Silica Gel Column Prior to Analysis

Sample ID Laboratory ID	$rac{ ext{Diesel Range}}{ ext{(C}_{10} ext{-C}_{25})}$	$rac{ ext{Motor Oil Range}}{ ext{(C}_{25} ext{-C}_{36} ext{)}}$	Surrogate (% Recovery) (Limit 41-152)
SB-0210-0620 006216-01 1/100	97,000	<25,000	ip
SB-01-0620 006216-04 1/100	620,000	<25,000	ip
SB-02-0620 006216-06 1/100	77,000	<25,000	ip
SB-03-0620 006216-08 1/100	1,700,000	$72,\!000 \mathrm{\ x}$	ip
SB-04-0620 006216-10 1/10	12,000	<2,500	109
SB-05-0620 006216-12 1/100	71,000,000	2,000,000 x	ip
SB-06-0620 006216-14 1/10	15,000	<2,500	94
SB-07-0620 006216-16	550	<250	102
SB-08-0620 006216-18	55 x	290	106

ENVIRONMENTAL CHEMISTS

Date of Report: 06/24/20 Date Received: 06/13/20

Project: PoT-Parcel 40, F&BI 006216

Date Extracted: 06/15/20

Date Analyzed: 06/16/20 and 06/18/20

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx Sample Extracts Passed Through a Silica Gel Column Prior to Analysis

Sample ID Laboratory ID	$rac{ ext{Diesel Range}}{ ext{(C}_{10} ext{-C}_{25})}$	$\frac{\text{Motor Oil Range}}{(\text{C}_{25}\text{-C}_{36})}$	Surrogate (% Recovery) (Limit 41-152)
SB-08D-0620 006216-19	310	<250	55
SB-09-0620 006216-21 1/10	61,000	<2,500	ip
SB-01D-0620 006216-23	470	<250	83
Method Blank 00-1356 MB	<50	<250	99
Method Blank 00-1410 MB2	<50	<250	87

ENVIRONMENTAL CHEMISTS

Date of Report: 06/24/20 Date Received: 06/13/20

Project: PoT-Parcel 40, F&BI 006216

Date Extracted: 06/15/20

Date Analyzed: 06/15/20, 06/16/20 and 06/17/20

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Sample ID Laboratory ID	$\frac{\text{Diesel Range}}{(\text{C}_{10}\text{-}\text{C}_{25})}$	$rac{ ext{Motor Oil Range}}{ ext{(C}_{25} ext{-C}_{36} ext{)}}$	Surrogate (% Recovery) (Limit 47-140)
SB-0210-0620 006216-01 1/100	94,000	<25,000	ip
SB-01-0620 006216-04 1/100	690,000	<25,000	ip
SB-02-0620 006216-06 1/100	78,000	<25,000	ip
SB-03-0620 006216-08 1/100	1,700,000	64,000 x	ip
SB-04-0620 006216-10 1/10	25,000	3,100 x	82
SB-05-0620 006216-12 1/100	62,000,000	1,500,000 x	ip
SB-06-0620 006216-14 1/10	18,000	<2,500	98
SB-07-0620 006216-16	1,100	<250	113
SB-08-0620 006216-18	280	330	110
SB-08D-0620 006216-19	640	<250	61

ENVIRONMENTAL CHEMISTS

Date of Report: 06/24/20 Date Received: 06/13/20

Project: PoT-Parcel 40, F&BI 006216

Date Extracted: 06/15/20

Date Analyzed: 06/15/20, 06/16/20 and 06/17/20

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Sample ID Laboratory ID	$rac{ ext{Diesel Range}}{ ext{(C}_{10} ext{-C}_{25})}$	$\frac{\text{Motor Oil Range}}{(C_{25}\text{-}C_{36})}$	Surrogate (% Recovery) (Limit 47-140)
SB-09-0620 006216-21 1/10	54,000	<2,500	ip
SB-01D-0620 006216-23	880	<250	84
Method Blank _{00-1356 MB}	<50	<250	104
Method Blank	< 50	<250	86

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

te Consulting
•

Date Received: 06/13/20 Project: PoT-Parcel 40, F&BI 006216

 Date Extracted:
 06/15/20
 Lab ID:
 006216-22

 Date Analyzed:
 06/16/20
 Data File:
 006216-22.061

 Matrix:
 Soil
 Instrument:
 ICPMS2

<1

Units: mg/kg (ppm) Dry Weight Operator: SP

Analyte:	Concentration mg/kg (ppm)
Arsenic	1.59
Barium	29.4
Cadmium	<1
Chromium	10.2
Lead	8.38
Mercury	<1
Selenium	<1

Silver

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Method Blank Client: Crete Consulting

Date Received: NA Project: PoT-Parcel 40, F&BI 006216

<1

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration mg/kg (ppm)

 Arsenic
 <1</td>

 Barium
 <1</td>

 Cadmium
 <1</td>

 Chromium
 <1</td>

 Lead
 <1</td>

 Mercury
 <1</td>

 Selenium
 <1</td>

Analyte:

Silver

ENVIRONMENTAL CHEMISTS

Date of Report: 06/24/20 Date Received: 06/13/20

Project: PoT-Parcel 40, F&BI 006216

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING METHOD 8021B AND NWTPH-Gx

Laboratory Code: 006286-01 (Duplicate)

Analyte	Reporting Units	Sample Result (Wet Wt)	Duplicate Result (Wet Wt)	RPD (Limit 20)
Benzene	mg/kg (ppm)	< 0.1	< 0.1	nm
Toluene	mg/kg (ppm)	< 0.1	< 0.1	nm
Ethylbenzene	mg/kg (ppm)	0.62	< 0.1	nm
Xylenes	mg/kg (ppm)	0.40	< 0.3	nm
Gasoline	mg/kg (ppm)	<5	13	nm

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	mg/kg (ppm)	0.5	90	69-120
Toluene	mg/kg (ppm)	0.5	88	70 - 117
Ethylbenzene	mg/kg (ppm)	0.5	89	65 - 123
Xylenes	mg/kg (ppm)	1.5	90	66-120
Gasoline	mg/kg (ppm)	20	90	71 - 131

ENVIRONMENTAL CHEMISTS

Date of Report: 06/24/20 Date Received: 06/13/20

Project: PoT-Parcel 40, F&BI 006216

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING METHOD 8021B AND NWTPH-Gx

Laboratory Code: 006280-01 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Benzene	ug/L (ppb)	<1	<1	nm
Toluene	ug/L (ppb)	<1	<1	nm
Ethylbenzene	ug/L (ppb)	<1	<1	nm
Xylenes	ug/L (ppb)	<3	<3	nm
Gasoline	ug/L (ppb)	<100	<100	nm

		Percent				
	Reporting	Spike	Recovery	Acceptance		
Analyte	Units	Level	LCS	Criteria		
Benzene	ug/L (ppb)	50	95	65-118		
Toluene	ug/L (ppb)	50	94	72 - 122		
Ethylbenzene	ug/L (ppb)	50	100	73-126		
Xylenes	ug/L (ppb)	150	99	74-118		
Gasoline	ug/L (ppb)	1,000	109	69-134		

ENVIRONMENTAL CHEMISTS

Date of Report: 06/24/20 Date Received: 06/13/20

Project: PoT-Parcel 40, F&BI 006216

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 006214-01 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	< 50	108	98	64-133	10

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Diesel Extended	mg/kg (ppm)	5,000	108	58-147

ENVIRONMENTAL CHEMISTS

Date of Report: 06/24/20 Date Received: 06/13/20

Project: PoT-Parcel 40, F&BI 006216

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: Laboratory Control Sample Silica Gel

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	84	88	63-142	5

ENVIRONMENTAL CHEMISTS

Date of Report: 06/24/20 Date Received: 06/13/20

Project: PoT-Parcel 40, F&BI 006216

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: Laboratory Control Sample Silica Gel

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	96	88	61-133	9

ENVIRONMENTAL CHEMISTS

Date of Report: 06/24/20 Date Received: 06/13/20

Project: PoT-Parcel 40, F&BI 006216

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	88	92	61-133	4

ENVIRONMENTAL CHEMISTS

Date of Report: 06/24/20 Date Received: 06/13/20

Project: PoT-Parcel 40, F&BI 006216

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	96	104	63-142	8

ENVIRONMENTAL CHEMISTS

Date of Report: 06/24/20 Date Received: 06/13/20

Project: PoT-Parcel 40, F&BI 006216

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 006187-01 x5 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Arsenic	mg/kg (ppm)	10	<5	83	83	75-125	0
Barium	mg/kg (ppm)	50	39.2	106	102	75 - 125	4
Cadmium	mg/kg (ppm)	10	<5	96	96	75 - 125	0
Chromium	mg/kg (ppm)	50	19.4	95	95	75 - 125	0
Lead	mg/kg (ppm)	50	13.9	97	100	75 - 125	3
Mercury	mg/kg (ppm	5	<5	100	97	75 - 125	3
Selenium	mg/kg (ppm)	5	<5	86	87	75 - 125	1
Silver	mg/kg (ppm)	10	<5	94	98	75 - 125	4

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	mg/kg (ppm)	10	92	80-120
Barium	mg/kg (ppm)	50	100	80-120
Cadmium	mg/kg (ppm)	10	99	80-120
Chromium	mg/kg (ppm)	50	101	80-120
Lead	mg/kg (ppm)	50	102	80-120
Mercury	mg/kg (ppm)	5	94	80-120
Selenium	mg/kg (ppm)	5	98	80-120
Silver	mg/kg (ppm)	10	101	80-120

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

City, State, ZIP Scottle, WA Report To 2. Hainsworth J. Stevens Address 108 S. Washington St. Company CRETE Consulting 006216 98104 Ste. 300

Phone 253-797-654 Phail

SAMPLE CHAIN OF CUSTODY $^{M}\mathcal{E}^{-}$

6-13-20

Page #

SAMPLERS (signature) PROJECT NAME REMARKS Dx waters - with a without 56 per 6# Pot-Parcel 40 Smary INVOICE TO

Archive samples Rush charges authorized by: X Standard turnaround O RUSH TURNAROUND TIME SAMPLE DISPOSAL

Default: Dispose after 30 days [] Other_

Project specific RLs? - Yes / No

Ph. (206) 285-8282 Recei	Seattle, WA 98119-2029 Relin	3012 16th Avenue West Received	Friedman & Bruya, Inc. Relinc	 1	SB-04-0620	SB-64-68		56-03-10	2	SB-02-09.5	20	-01-09		SB-0210-0620	Sample ID
Received by:	Relinquished by:	The second	Relinquished by:	SIG	10 A-D	2 年市	08 A-D	D7 A F0	06 A-D	05 A-E	01. A-D	03 A-E	02 A-E	01 A-De	Lab ID
		3	Jenes	SIGNATURE	4									06.12.2020	Date Sampled
		1	*		1515	l_			Shol	1035	e950	Ohba	0930	 	Time Sampled
	**************************************	ph.o.T.	Rusty Tows		WAIER	2016		7105	WALKEN !	SOIL	w有	Soll	5010	WITE	Sample t
		CE	o s	PRIN	2	- 5	1	= 5	1 =	15	上	1/2	7	4	# of Jars
- Artificial and a state of the	- Parity - Inches	MichalEnder	5	PRINT NAME					4	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		<u> </u>	\	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	NWTPH-Dx NWTPH-Gx BTEX EPA 8021
															NWTPH-HCID
			-		-										VOCs EPA 8260
		73	g						_		-				PAHs EPA 8270
		7 Chr	1866	COL											PCBs EPA 8082
Sam	·		Con	COMPANY		-							+++		
iples rec		- Limbia - L	Consulting	NX.											
Samples received at		L	06,13,2020	DATE	ם מחקם		1 VOA 10								z
2 2	2	+	200		T TIME		JOA Labeled as 131					- Line Company			Notes

City, State, ZIP_ Address Company_ Report To_ クリタイプ Hainswerthy Stevens CRETE CONSULTING

Phone 253-797-1323 Email

Project specific RLs? - Yes / No

Default: Dispose after 30 days

SAMPLE CHAIN OF CUSTODY ME 6-13-20

INVOICE TO	REMARKS
	Pot-Parcel 40
PO#	PROJECT NAME
Jows.	SAMPLERS (signature)

□ Archive samples NStandard turnaround Rush charges authorized by: TURNAROUND TIME SAMPLE DISPOSAL

COMPANY		PRINT NAME	PRINT			SIGNATURE	11	
		/ '	,	Soil	Oh@l		20	SB09-07.5
	<u>حر</u>	_ک	<u> </u>	WATER	1750		19.AD	53-08D-06ZO
		_	<u>~</u>	WATER	1700		118 BO	SB-08-0620
	<u> </u>	<u> </u>		Soti	Sh31			58-08-09
	1	< <		めた彼	1605		16 A 31	58-07-0620
		2		798	1555		15	SB-07-07.5
	$\vdash \rightarrow$	<u>ز</u> ر	Ľ,	WAREZ	1505		14 A-D	58-06-0620
		<u> </u>		2011	55h1		13	SB-06-09
				を深	SHE S		1240	5B-05-0670
		3	5	7105	Sohl	Sohl 0202-21-90	III A TO	58-05-09.5
BTEX EPA 8021 NWTPH-HCID VOCs EPA 8260 PAHs EPA 8270 PCBs EPA 8082	ALITAL LLICAN	NWTPH-Dx NWTPH-Gx	# of Jars	Sample Type	Time Sampled	Date Sampled	Lab ID	Sample ID
ANALYSES REQUESTED								

Ph. (206) 285-8282 Seattle, WA 98119-2029 3012 16th Avenue West

Friedman & Bruya, Inc. Relinquished by: Relinquished Received by: Rusty Jowes CRETE Consolling 06.13.2-12 1524 TIMIT Ph. (206) 285-8282 Seattle, WA 98119-2029 3012 16th Avenue West SB-010-0620 Friedman & Bruya, Inc. Report To Hainsworth Stevens 12311-2 Phone 253-797 6323 Email City, State, ZIP. Address Company_ 55-69-0620 006216 Sample ID CIETE Consulting Recoived by Relinquished by: Received by: Relinquished by: 21 A-D 23A-D Lab ID SIGNATURE 06-17,2000 06.12.7220 Sampled Date SAMPLE CHAIN OF CUSTODY \mathcal{HE} Sampled らる **1845** Time | Project specific RLs? - Yes / No SAMPLERS (signature)
Kusty Towes
PROJECT NAME REMARKS BT- Parcel 40 と大の 180 Sample Type Michiel Rusty Jones PRINT NAME # of Jars <u>~</u> NWTPH-Dx NWTPH-Gx BTEX EPA 8021 NWTPH-HCID INVOICE TO ANALYSES REQUESTED VOCs EPA 8260 PAHs EPA 8270 Tros. ORFIC CONSULTING Ę PCBs EPA 8082 COMPANY RCRA 8 Metals Page # 3 of Default: Dispose after 30 days □ Archive samples A Standard turnaround Rush charges authorized by: O RUSH_ SAMPLE DISPOSAL TURNAROUND TIME 86.13:2020 sample recieve DATE 2/19/2 = 10 Notes TIME 1074

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

August 12, 2020

Grant Hainsworth, Project Manager Crete Consulting 108 S. Washington St., Suite 300 Seattle, WA 98104

Dear Mr Hainsworth:

Included are the results from the testing of material submitted on August 6, 2020 from the Port of Tacoma, Parcel 40, F&BI 008077 project. There are 13 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Jamie Stevens CTC0812R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on August 6, 2020 by Friedman & Bruya, Inc. from the Crete Consulting Port of Tacoma, Parcel 40, F&BI 008077 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Crete Consulting
008077 -01	SB-10-05
008077 -02	SB-10-0820
008077 -03	SB-10D-0820
008077 -04	SB-11-09
008077 -05	SB-110-09
008077 -06	SB-11-0820
008077 -07	SB-12-10
008077 -08	SB-12-0820
008077 -09	SB-12D-0820
008077 -10	SB-13-09
008077 -11	SB-13-0820
008077 -12	SB-130-0820
008077 -13	SB-14-09
008077 -14	SB-14-0820
008077 -15	SB-15-08
008077 -16	SB-15-0820
008077 -17	SB-16-05
008077 -18	SB-16-0820

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 08/12/20 Date Received: 08/06/20

Project: Port of Tacoma, Parcel 40, F&BI 008077

Date Extracted: 08/06/20 Date Analyzed: 08/07/20

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (% Recovery) (Limit 50-150)
SB-10-05 008077-01	< 0.02	< 0.02	< 0.02	< 0.06	<5	95
SB-11-09 008077-04 1/5	<0.02 j	<0.1	3.3	2.6	1,500	112
SB-110-09 008077-05 1/5	<0.02 j	<0.1	2.9	2.3	1,500	112
SB-12-10 008077-07	< 0.02	< 0.02	< 0.02	<0.06	36	96
SB-13-09 008077-10 1/5	<0.02 j	<0.1	2.0	1.7	1,400	115
SB-14-09 008077-13	< 0.02	< 0.02	< 0.02	<0.06	<5	95
SB-15-08 008077-15	< 0.02	< 0.02	< 0.02	< 0.06	<5	94
SB-16-05 008077-17	< 0.02	< 0.02	< 0.02	<0.06	<5	94
Method Blank _{00-1780 MB}	<0.02	< 0.02	<0.02	<0.06	<5	94
Method Blank _{00-1399 MB2}	< 0.02	< 0.02	< 0.02	< 0.06	<5	94

ENVIRONMENTAL CHEMISTS

Date of Report: 08/12/20 Date Received: 08/06/20

Project: Port of Tacoma, Parcel 40, F&BI 008077

Date Extracted: 08/10/20 Date Analyzed: 08/10/20

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (% Recovery) (Limit 52-124)
SB-10-0820 008077-02	<1	<1	<1	<3	<100	83
SB-10D-0820 008077-03	<1	<1	<1	<3	<100	85
SB-11-0820 008077-06	<1	<1	<1	<3	430	82
SB-12-0820 008077-08	<1	<1	<1	<3	<100	81
SB-12D-0820 008077-09	<1	<1	<1	<3	<100	82
SB-13-0820 008077-11	<1	<1	<1	<3	280	83
SB-130-0820 008077-12	<1	<1	<1	<3	320	78
SB-14-0820 008077-14	<1	<1	3.0	<3	1,200	83
SB-15-0820 008077-16	<1	<1	<1	<3	<100	80
SB-16-0820 008077-18	<1	<1	<1	<3	<100	83
Method Blank 00-1782 MB	<1	<1	<1	<3	<100	85

ENVIRONMENTAL CHEMISTS

Date of Report: 08/12/20 Date Received: 08/06/20

Project: Port of Tacoma, Parcel 40, F&BI 008077

Date Extracted: 08/06/20 Date Analyzed: 08/06/20

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	$\frac{\text{Diesel Range}}{\text{(C}_{10}\text{-C}_{25})}$	$rac{ ext{Motor Oil Range}}{ ext{(C}_{25} ext{-C}_{36} ext{)}}$	Surrogate (% Recovery) (Limit 53-144)
SB-10-05 008077-01	<50	<250	89
SB-11-09 008077-04	8,000	550 x	97
SB-110-09 008077-05	9,400	640 x	99
SB-12-10 008077-07	150	<250	87
SB-13-09 008077-10	12,000	860 x	93
SB-14-09 008077-13	<50	<250	88
SB-15-08 008077-15	<50	<250	93
SB-16-05 008077-17	<50	<250	85
Method Blank _{00-1774 MB}	<50	<250	90

ENVIRONMENTAL CHEMISTS

Date of Report: 08/12/20 Date Received: 08/06/20

Project: Port of Tacoma, Parcel 40, F&BI 008077

Date Extracted: 08/06/20

Date Analyzed: 08/06/20 and 08/07/20

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx Sample Extracts Passed Through a Silica Gel Column Prior to Analysis

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	$rac{ ext{Diesel Range}}{ ext{(C}_{10} ext{-C}_{25})}$	Motor Oil Range (C25-C36)	Surrogate (% Recovery) (Limit 47-140)
SB-10-0820 008077-02	<50	<250	115
SB-10D-0820 008077-03	<50	<250	102
SB-11-0820 008077-06	5,900	<250	114
SB-12-0820 008077-08	2,600	1,300	102
SB-12D-0820 008077-09	<50	<250	113
SB-13-0820 008077-11	9,000	960 x	78
SB-130-0820 008077-12	12,000	1,400 x	66
SB-14-0820 008077-14 1/10	130,000	5,600 x	ip
SB-15-0820 008077-16	2,900	330 х	78
SB-16-0820 008077-18	<50	<250	132
Method Blank 00-1776 MB	<50	<250	115

ENVIRONMENTAL CHEMISTS

Date of Report: 08/12/20 Date Received: 08/06/20

Project: Port of Tacoma, Parcel 40, F&BI 008077

Date Extracted: 08/06/20

Date Analyzed: 08/06/20 and 08/07/20

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	$rac{ ext{Diesel Range}}{ ext{(C}_{10} ext{-C}_{25} ext{)}}$	$rac{ ext{Motor Oil Range}}{ ext{(C}_{25} ext{-C}_{36} ext{)}}$	Surrogate (% Recovery) (Limit 41-152)
SB-10-0820 008077-02	<50	<250	97
SB-10D-0820 008077-03	400 x	<250	101
SB-11-0820 008077-06	7,200	<250	103
SB-12-0820 008077-08	3,600	1,300	110
SB-12D-0820 008077-09	1,700 x	380 x	103
SB-13-0820 008077-11	12,000	1,400 x	71
SB-130-0820 008077-12	16,000	1,900 x	60
SB-14-0820 008077-14 1/10	150,000	6,200 x	ip
SB-15-0820 008077-16	2,900	410 x	66
SB-16-0820 008077-18	<50	<250	115
Method Blank _{00-1776 MB}	<50	<250	109

ENVIRONMENTAL CHEMISTS

Date of Report: 08/12/20 Date Received: 08/06/20

Project: Port of Tacoma, Parcel 40, F&BI 008077

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 008054-02 (Duplicate)

Analyte	Reporting Units	Sample Result (Wet Wt)	Duplicate Result (Wet Wt)	RPD (Limit 20)
Benzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Toluene	mg/kg (ppm)	< 0.02	< 0.02	nm
Ethylbenzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Xylenes	mg/kg (ppm)	< 0.06	< 0.06	nm
Gasoline	mg/kg (ppm)	<5	<5	nm

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	mg/kg (ppm)	0.5	94	69-120
Toluene	mg/kg (ppm)	0.5	94	70 - 117
Ethylbenzene	mg/kg (ppm)	0.5	96	65 - 123
Xylenes	mg/kg (ppm)	1.5	93	66-120
Gasoline	mg/kg (ppm)	20	95	71 - 131

ENVIRONMENTAL CHEMISTS

Date of Report: 08/12/20 Date Received: 08/06/20

Project: Port of Tacoma, Parcel 40, F&BI 008077

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 008020-01 (Duplicate)

Analyte	Reporting Units	Sample Result (Wet Wt)	Duplicate Result (Wet Wt)	RPD (Limit 20)
Benzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Toluene	mg/kg (ppm)	< 0.02	< 0.02	nm
Ethylbenzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Xylenes	mg/kg (ppm)	< 0.06	< 0.06	nm
Gasoline	mg/kg (ppm)	<5	<5	nm

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	mg/kg (ppm)	0.5	92	69-120
Toluene	mg/kg (ppm)	0.5	94	70-117
Ethylbenzene	mg/kg (ppm)	0.5	96	65 - 123
Xylenes	mg/kg (ppm)	1.5	93	66-120
Gasoline	mg/kg (ppm)	20	90	71 - 131

ENVIRONMENTAL CHEMISTS

Date of Report: 08/12/20 Date Received: 08/06/20

Project: Port of Tacoma, Parcel 40, F&BI 008077

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 008021-01 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Benzene	ug/L (ppb)	<1	<1	nm
Toluene	ug/L (ppb)	<1	<1	nm
Ethylbenzene	ug/L (ppb)	<1	<1	nm
Xylenes	ug/L (ppb)	<3	<3	nm
Gasoline	ug/L (ppb)	<100	<100	nm

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/L (ppb)	50	99	65-118
Toluene	ug/L (ppb)	50	99	72 - 122
Ethylbenzene	ug/L (ppb)	50	100	73-126
Xylenes	ug/L (ppb)	150	100	74-118
Gasoline	ug/L (ppb)	1,000	108	69-134

ENVIRONMENTAL CHEMISTS

Date of Report: 08/12/20 Date Received: 08/06/20

Project: Port of Tacoma, Parcel 40, F&BI 008077

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 008075-01 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	< 50	102	104	64-133	2

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Diesel Extended	mg/kg (ppm)	5,000	94	58-147

ENVIRONMENTAL CHEMISTS

Date of Report: 08/12/20 Date Received: 08/06/20

Project: Port of Tacoma, Parcel 40, F&BI 008077

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

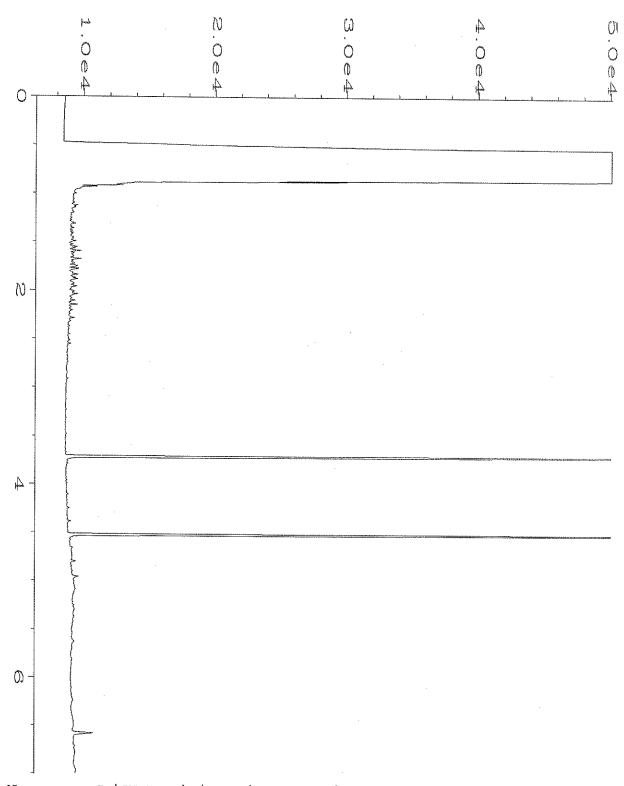
Laboratory Code: Laboratory Control Sample Silica Gel

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	84	96	61-133	13

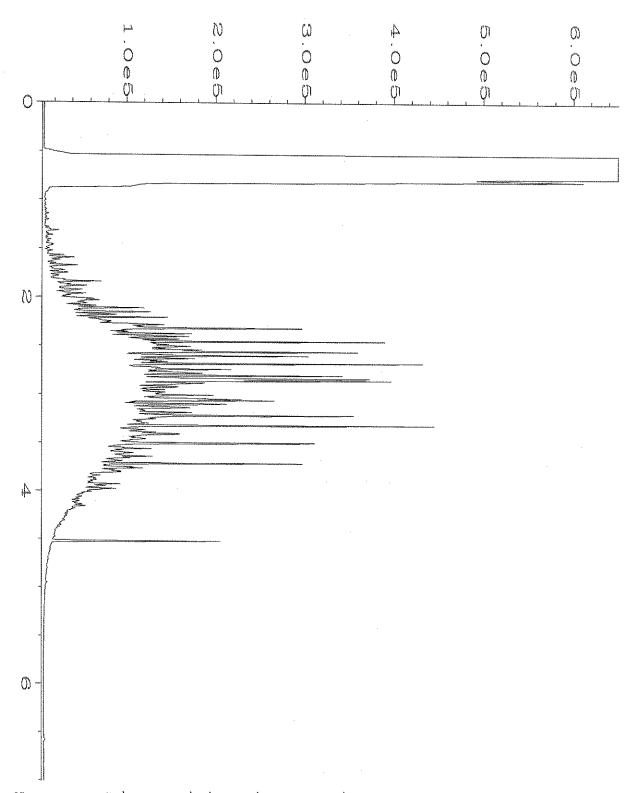
ENVIRONMENTAL CHEMISTS

Date of Report: 08/12/20 Date Received: 08/06/20

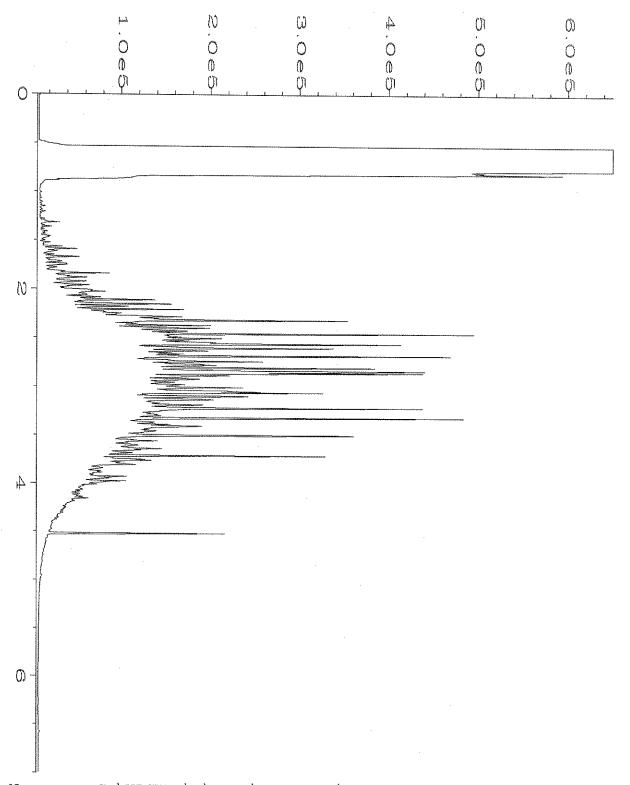
Project: Port of Tacoma, Parcel 40, F&BI 008077

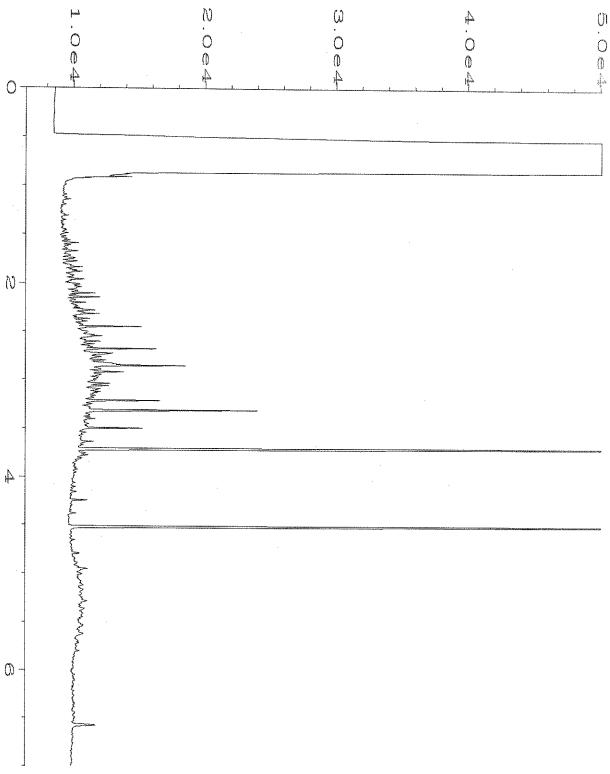

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	88	92	63-142	4


ENVIRONMENTAL CHEMISTS

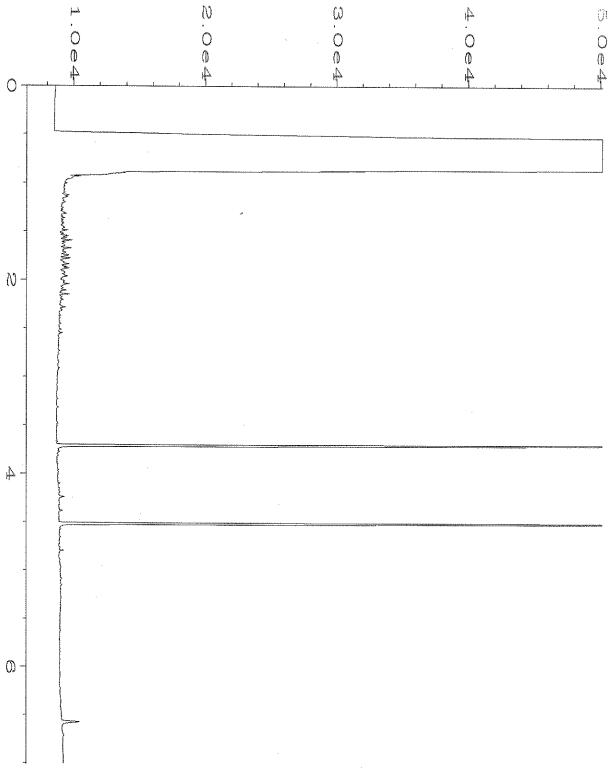
Data Qualifiers & Definitions

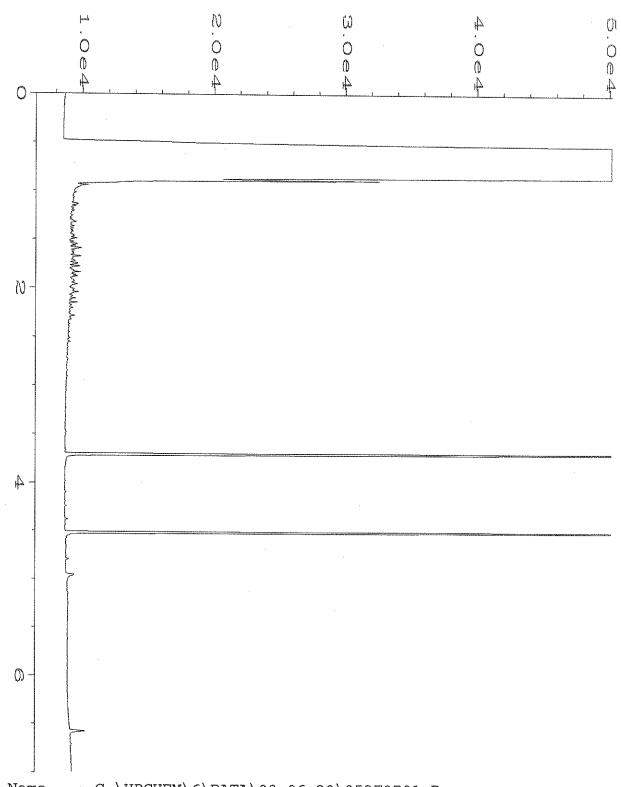

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

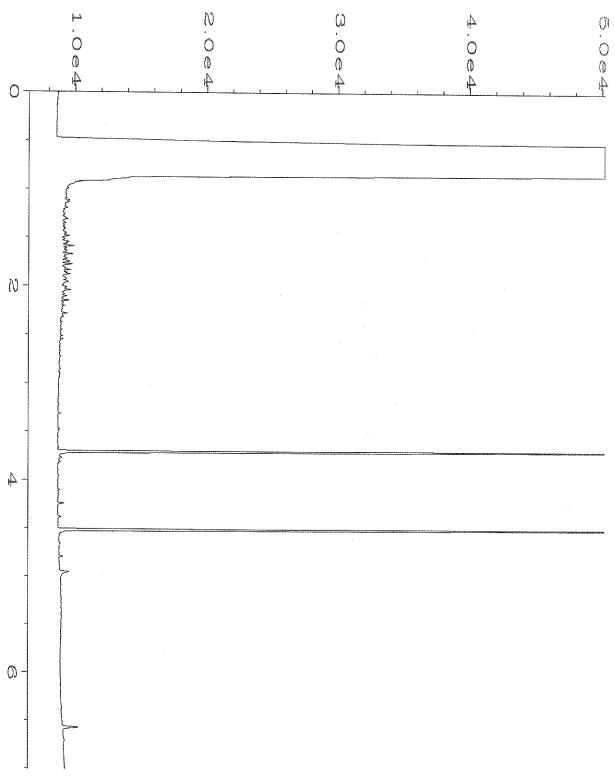

```
: C:\HPCHEM\6\DATA\08-06-20\046F0701.D
Data File Name
               * : TL
Operator
                                               Page Number
Instrument
                : GC6
                                               Vial Number
                                                                : 46
Sample Name
                : 008077-01
                                               Injection Number: 1
Run Time Bar Code:
                                               Sequence Line
                                                             : 7
Acquired on : 06 Aug 20 05:02 PM
                                               Instrument Method: DX.MTH
Report Created on: 07 Aug 20 07:27 AM
                                               Analysis Method : DEFAULT.MTH
```

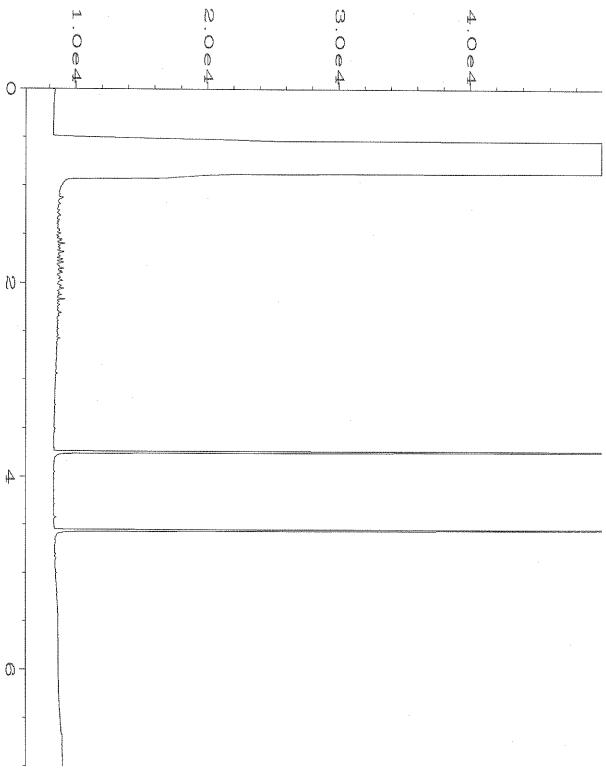


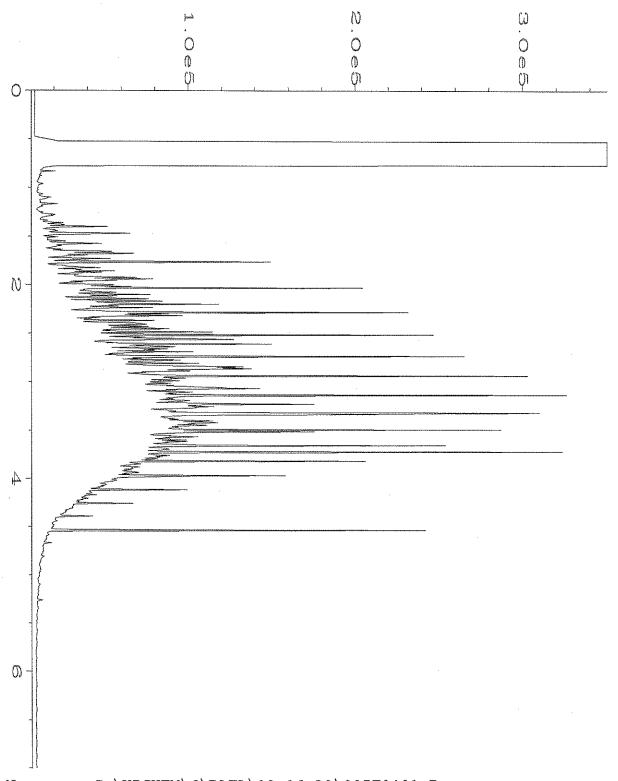
```
: C:\HPCHEM\6\DATA\08-06-20\047F0701.D
Data File Name
Operator
                : TL
                                              Page Number
                                              Vial Number
Instrument
                : GC6
                                                               : 47
Sample Name
                : 008077-04
                                              Injection Number: 1
                                              Sequence Line : 7
Run Time Bar Code:
Acquired on : 06 Aug 20 05:13 PM
                                              Instrument Method: DX.MTH
Report Created on: 07 Aug 20 07:27 AM
                                              Analysis Method : DEFAULT.MTH
```

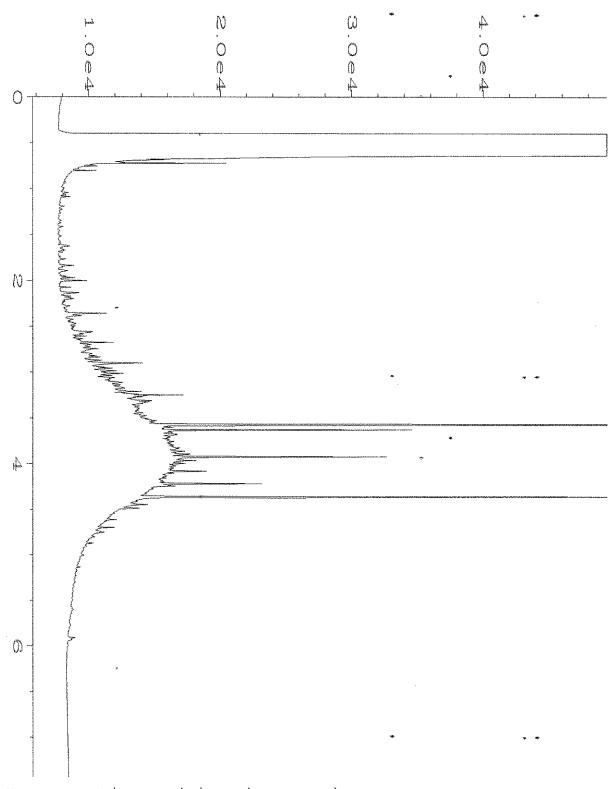


```
: C:\HPCHEM\6\DATA\08-06-20\048F0701.D
Data File Name
Operator
                : TL
                                              Page Number
Instrument
                : GC6
                                              Vial Number
Sample Name
                : 008077-05
                                              Injection Number: 1
Run Time Bar Code:
                                              Sequence Line
                                                            : 7
Acquired on : 06 Aug 20 05:24 PM
                                              Instrument Method: DX.MTH
Report Created on: 07 Aug 20 07:27 AM
                                              Analysis Method : DEFAULT.MTH
```



```
: C:\HPCHEM\6\DATA\08-06-20\049F0701.D
Data File Name
Operator
                : TL
                                               Page Number
Instrument
                : GC6
                                               Vial Number
Sample Name
                : 008077-07
                                               Injection Number: 1
Run Time Bar Code:
                                               Sequence Line
                                                             : 7
Acquired on : 06 Aug 20 05:35 PM
                                               Instrument Method: DX.MTH
Report Created on: 07 Aug 20 07:28 AM
                                              Analysis Method : DEFAULT.MTH
```

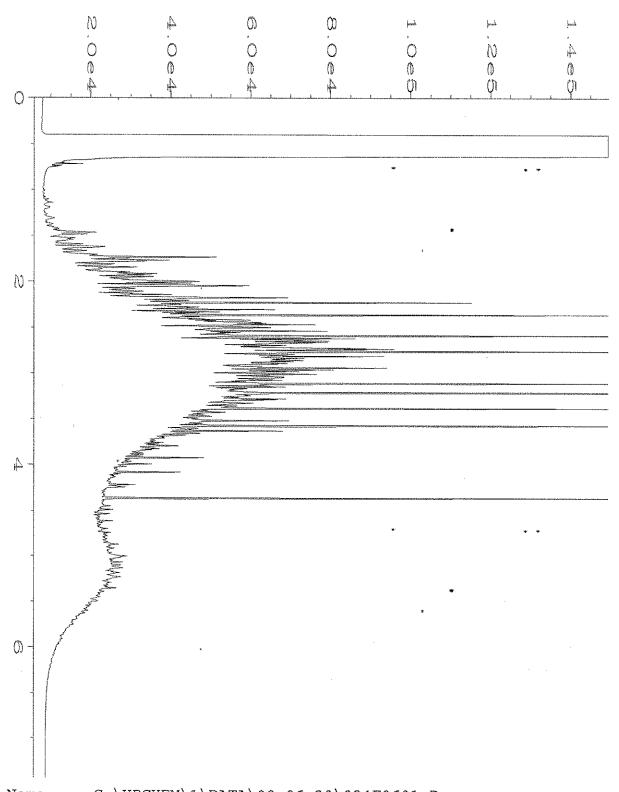


```
: C:\HPCHEM\6\DATA\08-06-20\050F0701.D
Data File Name
Operator
                : TL
                                              Page Number
Instrument
                                              Vial Number
                : GC6
                                                               : 50
Sample Name
                : 008077-10
                                              Injection Number: 1
Run Time Bar Code:
                                               Sequence Line : 7
Acquired on : 06 Aug 20 05:46 PM
                                               Instrument Method: DX.MTH
Report Created on: 07 Aug 20 07:28 AM
                                              Analysis Method : DEFAULT.MTH
```



```
Data File Name
                : C:\HPCHEM\6\DATA\08-06-20\051F0701.D
Operator
                : TL
                                              Page Number
                                              Vial Number
Instrument
                : GC6
                                                               : 51
Sample Name
                                              Injection Number: 1
                : 008077-13
                                                            : 7
Run Time Bar Code:
                                              Sequence Line
Acquired on : 06 Aug 20 05:57 PM
                                              Instrument Method: DX.MTH
Report Created on: 07 Aug 20 07:28 AM
                                              Analysis Method : DEFAULT.MTH
```

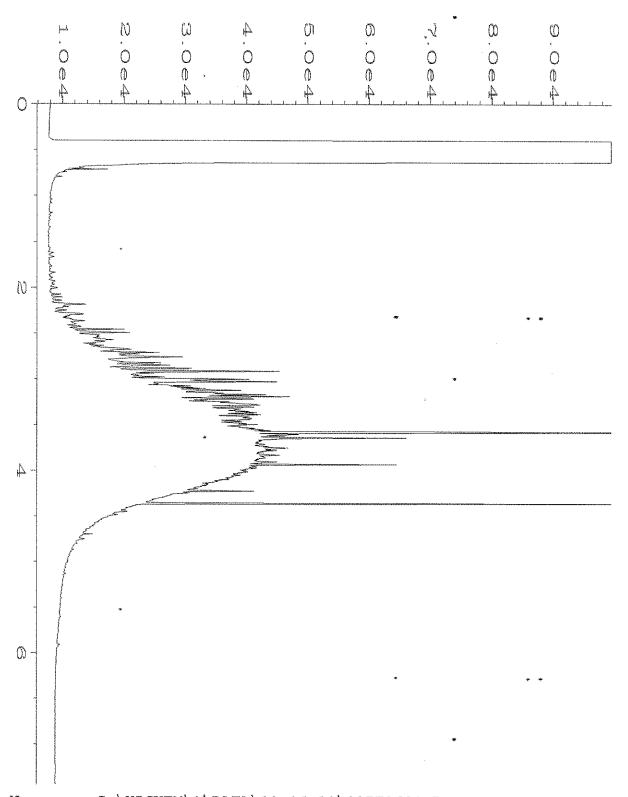


```
: C:\HPCHEM\6\DATA\08-06-20\052F0701.D
Data File Name
Operator
                 : TL
                                                 Page Number
Instrument
                 : GC6
                                                 Vial Number
                                                                  : 52
Sample Name
                                                 Injection Number: 1
Sequence Line: 7
                 : 008077-15
Run Time Bar Code:
Acquired on : 06 Aug 20 06:08 PM
                                                 Instrument Method: DX.MTH
Report Created on: 07 Aug 20 07:28 AM
                                                 Analysis Method : DEFAULT.MTH
```



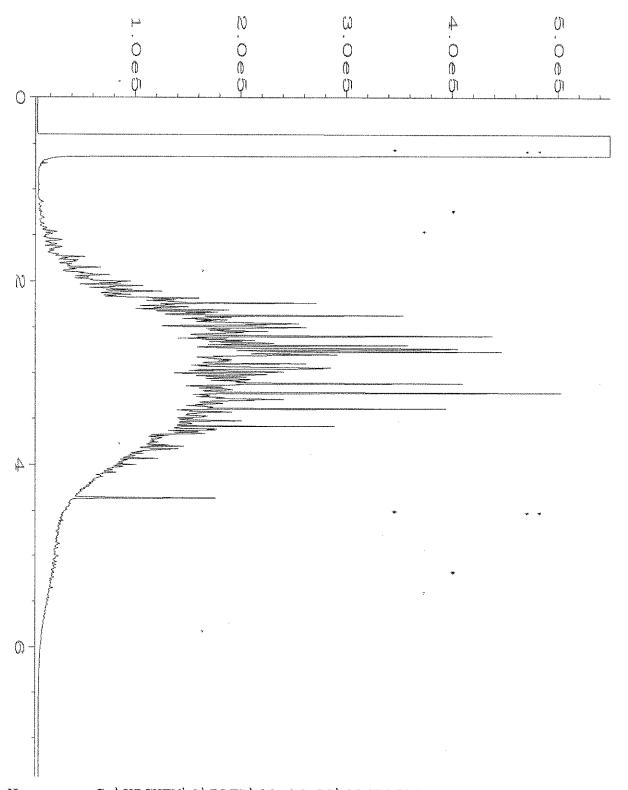

```
Data File Name
                : C:\HPCHEM\6\DATA\08-06-20\053F0701.D
Operator
                                                Page Number
Vial Number
                 : TL
Instrument
                 : GC6
Sample Name
                 : 008077-17
                                                Injection Number: 1
Run Time Bar Code:
                                                Sequence Line : 7
Acquired on : 06 Aug 20 06:19 PM
                                                Instrument Method: DX.MTH
Report Created on: 07 Aug 20 07:28 AM
                                                Analysis Method : DEFAULT.MTH
```

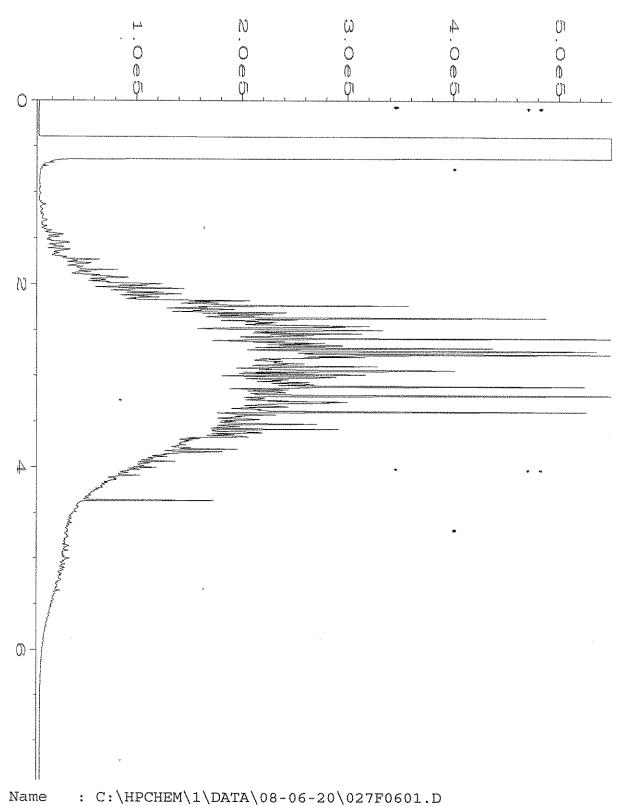



```
: C:\HPCHEM\6\DATA\08-06-20\006F0301.D
Data File Name
Operator
                : TL
                                              Page Number
                                              Vial Number
Instrument
                : GC6
                                                               : 6
Sample Name
                : 00-1774 mb
                                              Injection Number: 1
Run Time Bar Code:
                                              Sequence Line : 3
Acquired on : 06 Aug 20 08:39 AM
                                              Instrument Method: DX.MTH
Report Created on: 07 Aug 20 07:29 AM
                                              Analysis Method : DEFAULT.MTH
```




```
: C:\HPCHEM\1\DATA\08-06-20\022F0601.D .
Data File Name
                                                         Page Number
Vial Number
Operator
                    : TL
Instrument
                    : GC1
                                                         Injection Number : 1
Sequence Line : 6
Sample Name
                    : 008077-03
Run Time Bar Code:
                                                         Instrument Method: DX.MTH
Analysis Method: DEFAULT.MTH
               : 06 Aug 20 03:04 PM
Acquired on
Report Created on: 07 Aug 20
                                  08:06 AM
```



Data File Name : C:\HPCHEM\1\DATA\08-06-20\024F0601.D Operator Page Number Vial Number : TL Instrument : GC1 : 24 Injection Number: 1 Sequence Line: 6 Sample Name : 008077-08 Run Time Bar Code: Instrument Method: DX.MTH Acquired on : 06 Aug 20 03:27 PM Report Created on: 07 Aug 20 08:06 AM Analysis Method · : DEFAULT.MTH


Data · File Name : C:\HPCHEM\1\DATA\08-06-20\025F0601.D Operator : TL Page Number : 1 Vial Number : 25 Injection Number : 1 Instrument : GC1 Sample Name : 008077-09 Run Time Bar Code: Acquired on : Sequence Line : 6

Instrument Method: DX.MTH : 06 Aug 20 03:39 PM

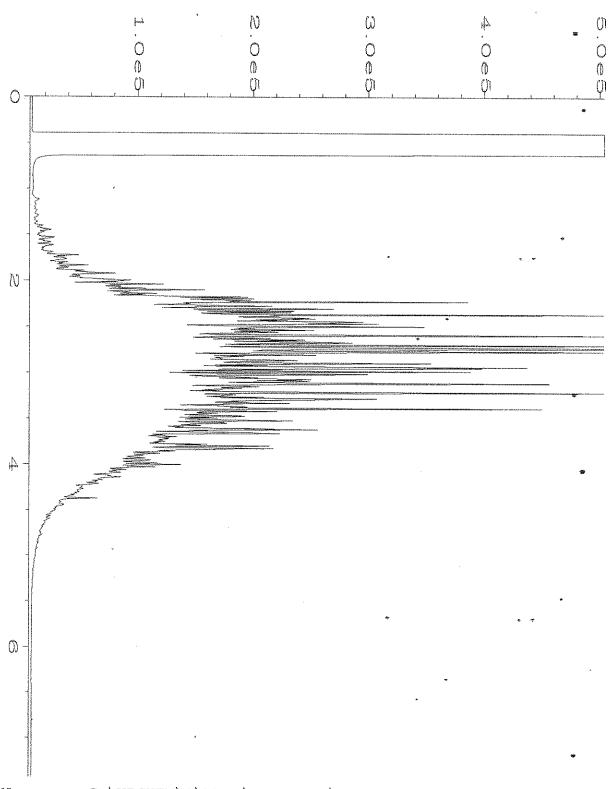
Report Created on: 07 Aug 20 08:06 AM Analysis Method : DEFAULT.MTH


```
Data File Name
                  : C:\HPCHEM\1\DATA\08-06-20\026F0601.D
                                                 Page Number
Vial Number
Operator
                  : TL
Instrument
                  : GC1
                                                                   : 26
Sample Name
                 : 008077-11
                                                 Injection Number: 1
Run Time Bar Code:
                                                 Sequence Line : 6
Acquired on
                                                 Instrument Method: DX.MTH
                 : 06 Aug 20 03:51 PM
Report Created on: 07 Aug 20 08:07 AM
                                                 Analysis Method : DEFAULT.MTH
```

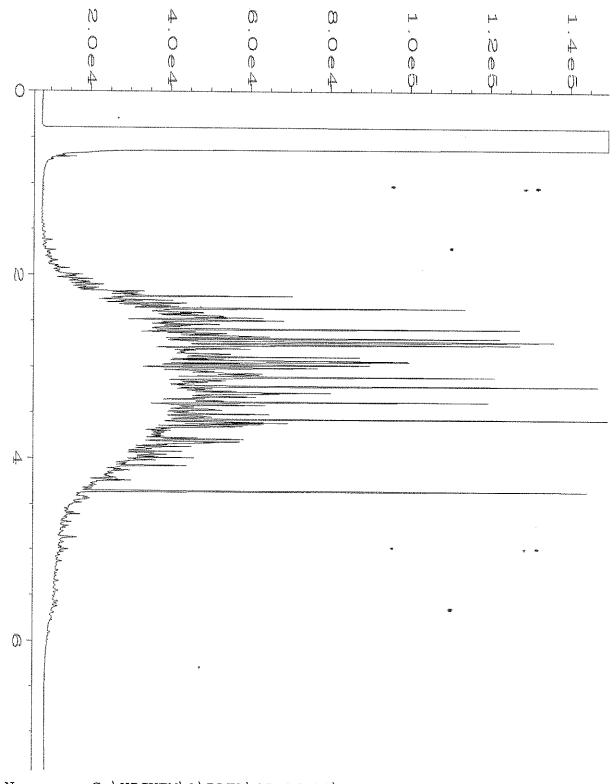


```
Data File Name : C:\HPCHEM\1\DATA\08-06-20\027F0601.D

Operator : TL Page Number : 1

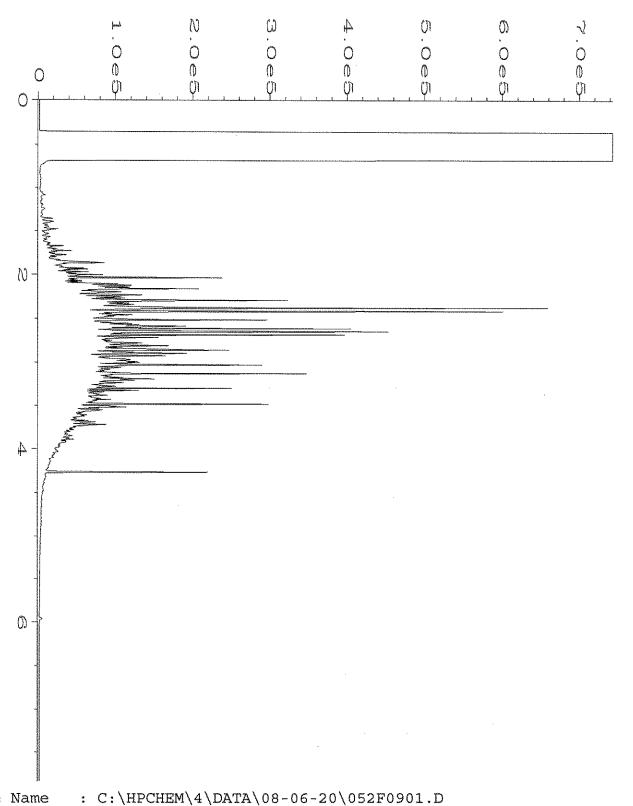

Instrument : GC1 Vial Number - 27

Sample Name : 008077-12 Injection Number : 1


Run Time Bar Code: Sequence Line : 6

Acquired on : 06 Aug 20 04:03 PM Instrument Method: DX.MTH
```

Report Created on: 07 Aug 20 08:07 AM Analysis Method : DEFAULT.MTH




```
: C:\HPCHEM\1\DATA\08-07-20\006F0301.D
Data File Name
                                                  Page Number
Vial Number
Operator
                  : TL
Instrument
                  : GC1
                                                                    : 6
Sample Name
                  : 008077-14 1/10
                                                  Injection Number: 1
Run Time Bar Code:
                                                  Sequence Line
                                                  Instrument Method: DX.MTH
Acquired on
                 : 07 Aug 20
                               09:49 AM
Report Created on: 10 Aug 20 07:43 AM
                                                 Analysis Method : DEFAULT.MTH
```

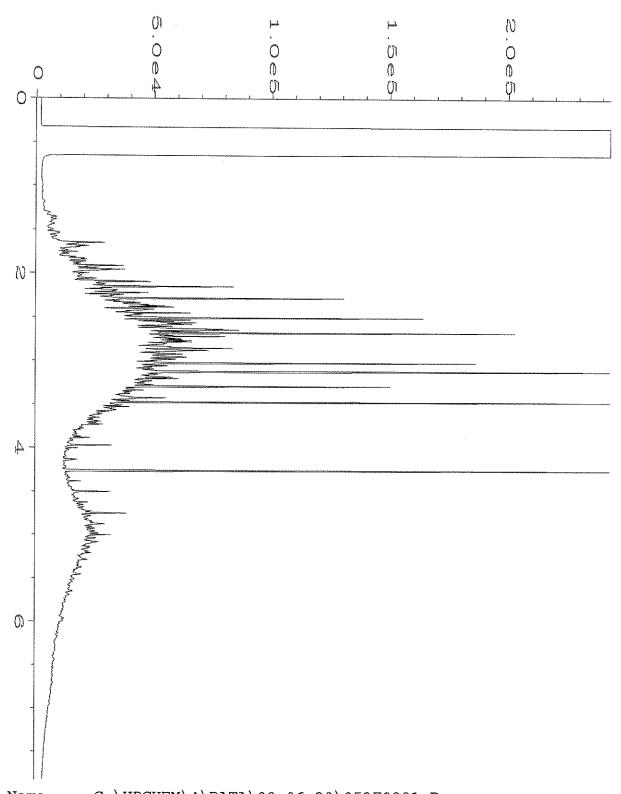


```
Data File Name
                  : C:\HPCHEM\1\DATA\08-06-20\029F0601.D
Operator
                  : TL
                                                   Page Number
Vial Number
Instrument
                  : GC1
                                                                     : 29
Sample Name
                  : 008077-16
                                                   Injection Number: 1
Sequence Line: 6
Run Time Bar Code:
Acquired on
                                                   Instrument Method: DX.MTH
              : 06 Aug 20 04:26 PM
Report Created on: 07 Aug 20 08:08 AM
                                                   Analysis Method : DEFAULT.MTH
```

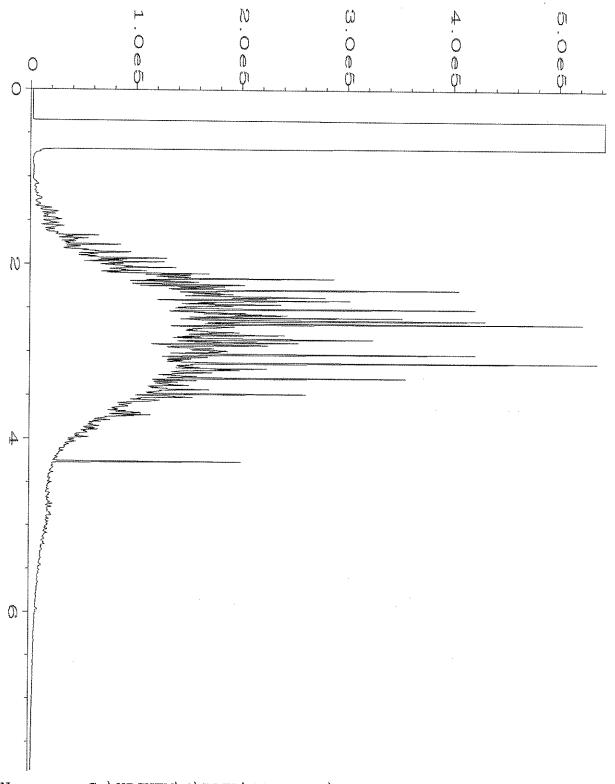
....

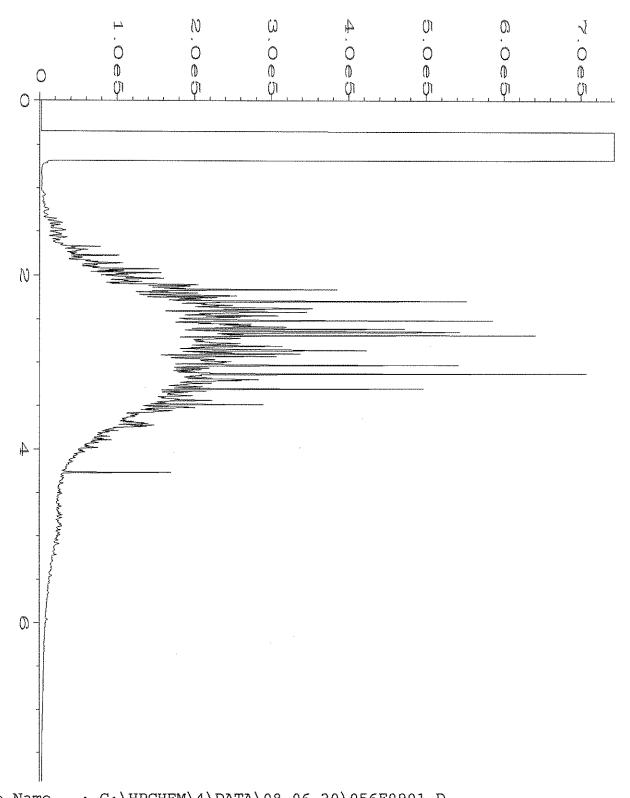

```
Data File Name : C:\HPCHEM\4\DATA\08-06-20\052F0901.D

Operator : TL Page Number : 1

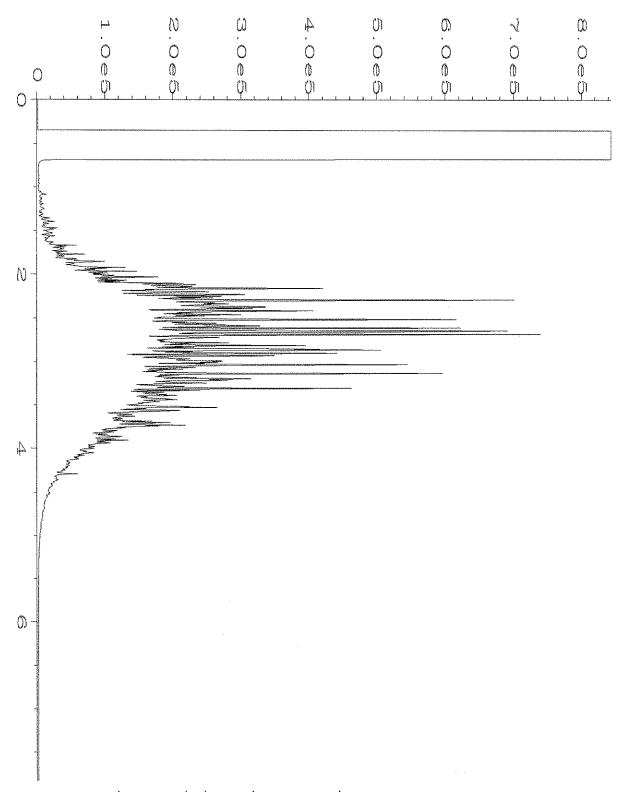

Instrument : GC#4 Vial Number : 52

Sample Name : 008077-06 sg Injection Number : 1


Run Time Bar Code: Sequence Line : 9


Acquired on : 06 Aug 20 07:53 PM Instrument Method: DX.MTH
```

Report Created on: 07 Aug 20 08:44 AM Analysis Method : DEFAULT.MTH


```
: C:\HPCHEM\4\DATA\08-06-20\053F0901.D
Data File Name
Operator
                                                Page Number
                 : TL
                                                                 : 1
                                                Vial Number : 53
Instrument
                 : GC#4
Sample Name
                : 008077-08 sg
                                                Injection Number: 1
Run Time Bar Code: Acquired on :
                                                Sequence Line : 9
                : 06 Aug 20 08:06 PM
                                                Instrument Method: DX.MTH
Report Created on: 07 Aug 20 08:45 AM
                                                Analysis Method : DEFAULT.MTH
```

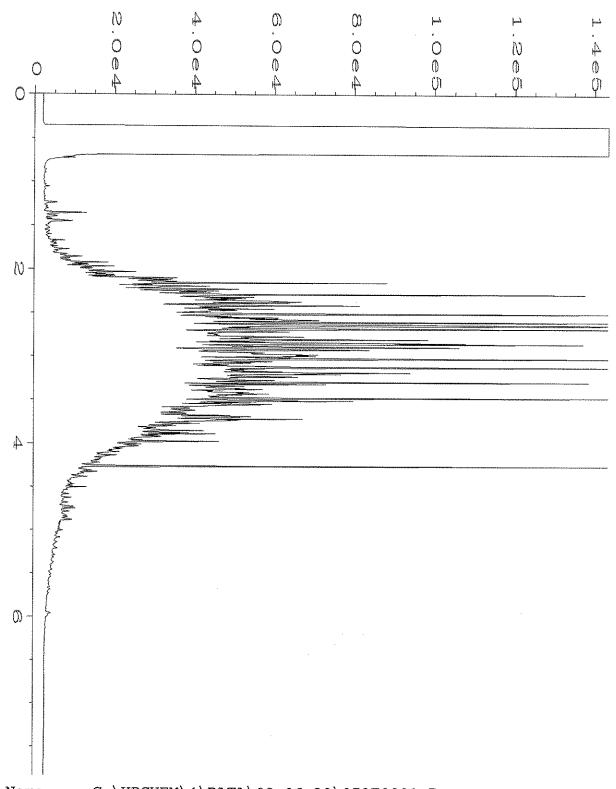


```
Data File Name
                     : C:\HPCHEM\4\DATA\08-06-20\056F0901.D
                                                           Page Number : 1
Vial Number : 56
Injection Number : 1
Operator
                     : TL
Instrument
                     : GC#4
Sample Name
                    : 008077-12 sg
                                                           Sequence Line : 9
Instrument Method: DX.MTH
Run Time Bar Code:
Acquired on
```

Acquired on : 06 Aug 20 08:45 PM Report Created on: 07 Aug 20 08:45 AM Analysis Method : DEFAULT.MTH


```
Data File Name : C:\HPCHEM\4\DATA\08-07-20\006F0301.D

Operator : TL Page Number : 1


Instrument : GC#4 Vial Number : 6

Sample Name : 008077-14 1/10 s Injection Number : 1

Run Time Bar Code: Sequence Line : 3

Acquired on : 07 Aug 20 09:54 AM Instrument Method: DX.MTH
```

Report Created on: 10 Aug 20 07:14 AM Analysis Method : DEFAULT.MTH

440800

SAMPLE CHAIN OF CUSTODY ME 8/6/20 VW2/152/c03

Report To Grant Halmswerth

Company CRETE ConsultING, INC.

Address 108 S. Washington St. Str. 300

City, State, ZIP Scattle, WA 98104

Phone 253-797-6323 Email

INVOICE TO	REMARKS
	Parcel 40
	Port of Tacoma,
PO#	PROJECT NAME
3	Rusty James Milares
	SAMPLERS (signature) 0

O RUSH

Standard turnaround

TURNAROUND TIME

Rush charges authorized by:

Project specific RLs? - Yes / No

SAMPLE DISPOSAL

Archive samples

Other

Default: Dispose after 30 days

SB-13-09 10	SB-12D-0820 09	SB-12-8820 08	SB-12-10 07	SB-11-0820 06	SB-110-09 05	SB-11-09 64	SB-10D-0820 03	SB-10-0820 02	SB-10-05 01 A-13 8.5.2020	Sample ID Lab ID	
									138		
\									5,,2620	Date Sampled	
1330	1725	100	1055	10[5	(010	Olal	010	0825	0815	Time Sampled	
SOL	←	WATER	SOIC	MATER	•	2105	(mkil65	SOIL	Sample 'Type	
2	5	5	Ġ	5	5	5	5	5	5	# of Jars	
	~	<	_	<	$\overline{}$	7	7)	5	NWTPH-Dx	
2	<u>'</u>	2	2	<	2	ζ`	7	\leq	ُر َ	NWTPH-Gx	
2	Ý	2	2	5	7	2	7	<u> </u>	<u>`</u>	BTEX EPA 8021	
		`.								NWTPH-HCID	A
	***************************************									VOCs EPA 8260	NAI
										PAHs EPA 8270	YSE
										PCBs EPA 8082	SRI
	7	<		~			<	~		w silice gel	QUI
	\	7	\.	/			7	7		wo siliea gel	ANALYSES REQUESTED
										······································	
					·						
										Notes	

Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029
Ph. (206) 285-8282

T&B Samples re		SIGNATURE	PRINT NAME	COMPANY	DATE TIME	TIME
Received by Mhy Ann Wobber Bruga F&B 2029 Relinquished by: Received by:	Bruya, Inc.	Relinquished by: Eusty Jones Clones	Fusty Joms	CRETE CONSULTING	86.20	083
Relinquished by: Received by:		Received by Why	Ann Webber Bruga	F&B		
Received by:	8119-2029	Relinquished by:				-
	-8282	Received by:		Samples	received a	f g

Report To___ Company CRETE Consulting

City, State, ZIP

Address_

Phone 253 7974323 Email

CAMDI PDC (signatura)	SAMPLE CHAIN OF CUSTODY
	ME
	8
	1/20
	ZWV. C
	soolesn/coz
	(co2

PROJECT NAME REMARKS Pert of Tacoma, Parcel 40 INVOICE TO PO#

□ Archive samples Rush charges authorized by: O RUSH Candard turnaround TURNAROUND TIME SAMPLE DISPOSAL

Default: Dispose after 30 days

Project specific RLs? - Yes / No

	SB-16-08ZD	SB-16-05	SB-15-0820	SB-15-08	SB-14-0820	8B-14-09	86-130-0820	38-13-820	Sample ID	
	18	7	16	\$	74	73	72	III A-6	Lab ID	
	<							8.5.7070	Date Sampled	
	1605	1600	1515	915)	1425	1420	1335	1335	Time Sampled	
	WHER	Set	WATER	2011	MAR	520	<u>_</u>	WATER	Sample Type	
	Ŋ	5	5	7	Ŋ	S	7	S	# of Jars	
	<	V	$ \gamma $	7	ζ	7	ζ	2	NWTPH-Dx	
		$\langle \rangle$	7	2	2	2	ς`		NWTPH-Gx	
	7	()	7	<	7	2	7	7	BTEX EPA 8021	
		\longrightarrow	`				`		NWTPH-HCID	A)
										NAL
									PAHs EPA 8270	YSE
							·		PCBs EPA 8082	3 RE
	7		<	.,	7		2	7	w silica gel	QUE
	7		7		2		2	7	wo silica gel	ANALYSES REQUESTED
									Not	
									Ö S	
		18 J V 1605 WHER 5	17 160 SAL 5 VV	16 1515 WATER 5 VU 17 1600 Soil 5 VV 18 J 1605 WATER 5 VV	15 1510 SOIL 5 VU 16 1515 WATER 5 VU 18 1660 SOIL 5 VU 18 VI	14 1425 WAR 5 VV 16 1515 WAR 5 VV 17 160 SAL 5 VV 180 SAL 5 VV	19 1420 SAC 5 VU 16 1515 WHER 5 VU 18 160 SAC 5 VU 18 160 SAC 5 VU 18 160 SAC 5 VU	12 1335 U 5 UU 19 1420 Sal 5 UU 18 1510 Sal 5 UU 18 160 Sal 5 UU	11 A-E 8.5.7220 1335 WITER 5 VV 11 1335 J 5 VV 11 1420 SAL 5 VV 16 1515 WITER 5 VV 18 J 1605 SAL 5 VV 18 J 1605 WITER 5 VV	D Lab ID Date Time Sample Sample Sample Sample Sampled Sampled Sampled Type Jars 1255 WATER 5

Ph. (206) 285-8282 Seattle, WA 98119-2029 3012 16th Avenue West

Received by:

Received by MM

Ann Webber Duya

Rusty Jones

CREATE CONSMICTING

8.6,20

THE S

Samples received at

Relinquished by:

Friedman & Bruya, Inc.

Relinquished by:

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

October 12, 2020

Grant Hainsworth, Project Manager Crete Consulting 108 S. Washington St., Suite 300 Seattle, WA 98104

Dear Mr Hainsworth:

Included are the results from the testing of material submitted on October 5, 2020 from the Port of Tacoma Parcel 40, F&BI 010077 project. There are 6 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Rusty Jones CTC1012R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on October 5, 2020 by Friedman & Bruya, Inc. from the Crete Consulting Port of Tacoma Parcel 40, F&BI 010077 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u> <u>Crete Consulting</u> 010077 -01 MW-11-10-11.5

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 10/12/20 Date Received: 10/05/20

Project: Port of Tacoma Parcel 40, F&BI 010077

Date Extracted: 10/07/20 Date Analyzed: 10/08/20

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (% Recovery) (Limit 50-132)
MW-11-10-11.5	< 0.02	<0.02	< 0.02	<0.06	<5	78
Method Blank 00-2168 MB	< 0.02	< 0.02	< 0.02	< 0.06	<5	77

ENVIRONMENTAL CHEMISTS

Date of Report: 10/12/20 Date Received: 10/05/20

Project: Port of Tacoma Parcel 40, F&BI 010077

Date Extracted: 10/06/20 Date Analyzed: 10/06/20

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	$\frac{\text{Diesel Range}}{(\text{C}_{10}\text{-C}_{25})}$	$\frac{\text{Motor Oil Range}}{(\text{C}_{25}\text{-C}_{36})}$	Surrogate (% Recovery) (Limit 56-165)
MW-11-10-11.5 010077-01	<50	<250	89
Method Blank _{00-2274 MB}	<50	<250	81

ENVIRONMENTAL CHEMISTS

Date of Report: 10/12/20 Date Received: 10/05/20

Project: Port of Tacoma Parcel 40, F&BI 010077

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 010077-01 (Duplicate)

Analyte	Reporting Units	Sample Result (Wet Wt)	Duplicate Result (Wet Wt)	RPD (Limit 20)
Benzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Toluene	mg/kg (ppm)	< 0.02	0.032	nm
Ethylbenzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Xylenes	mg/kg (ppm)	< 0.06	< 0.06	nm
Gasoline	mg/kg (ppm)	<5	<5	nm

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	mg/kg (ppm)	0.5	90	66-121
Toluene	mg/kg (ppm)	0.5	88	72 - 128
Ethylbenzene	mg/kg (ppm)	0.5	90	69-132
Xylenes	mg/kg (ppm)	1.5	93	69-131
Gasoline	mg/kg (ppm)	20	80	61 - 153

ENVIRONMENTAL CHEMISTS

Date of Report: 10/12/20 Date Received: 10/05/20

Project: Port of Tacoma Parcel 40, F&BI 010077

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 010077-01 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	< 50	90	104	63-146	14

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Diesel Extended	mg/kg (ppm)	5,000	98	79-144

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Phone_ Ph. (206) 285-8282 Seattle, WA 98119-2029 3012 16th Avenue West Friedman & Bruya, Inc. City, State, ZIP Seattle WA Company Cretz Report To Grant Hainsworth Kusty Jones 740010 Address 108 S. Washington MW-11-10-11.5 Sample ID Consulting Email Relinquished by: Received by: Relinquished by: Received by: Lab ID Str. 300 48104 SIGNATURE 1. Jowes 10-4.2020 Sampled SAMPLE CHAIN OF CUSTODY Sampled 5480 PROJECT NAME SAMPLERS (signature)

Rusty our Project specific RLs? - Yes / No REMARKS Parcel 40 SOIL Sample Type ろを含り Rusty Jones (acoma Smo Jars # of PRINT NAME S でえる NWTPH-Dx メ NWTPH-Gx BTEX EPA 8021 Jomes . NWTPH-HCID INVOICE TO ANALYSES REQUESTED VOCs EPA 8260 PAHs EPA 8270 rete Consulting TRBI impled received at PCBs EPA 8082 COMPANY U-Standard turnaround ☐ Archive samples Default: Dispose after 30 days Rush charges authorized by: TURNAROUND TIME SAMPLE DISPOSAL 2 % Notes 10×0 801

TIME

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

November 25, 2020

Grant Hainsworth, Project Manager Crete Consulting 108 S. Washington St., Suite 300 Seattle, WA 98104

Dear Mr Hainsworth:

Included are the results from the testing of material submitted on November 18, 2020 from the Port of Tacoma, Parcel 40, F&BI 011334 project. There are 8 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Rusty Jones CTC1125R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on November 18, 2020 by Friedman & Bruya, Inc. from the Crete Consulting Port of Tacoma, Parcel 40, F&BI 011334 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Crete Consulting</u>
011334 -01	GEI-MW11-1120
011334 -02	GEI-MW3-1120

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 11/25/20 Date Received: 11/18/20

Project: Port of Tacoma, Parcel 40, F&BI 011334

Date Extracted: 11/19/20 Date Analyzed: 11/19/20

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Sample ID Laboratory ID	Benzene	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (% Recovery) (Limit 52-124)
GEI-MW11-1120 011334-01	<1	<1	<1	<3	<100	83
GEI-MW3-1120 011334-02	<1	<1	<1	<3	<100	82
Method Blank 00-2424 MB	<1	<1	<1	<3	<100	83

ENVIRONMENTAL CHEMISTS

Date of Report: 11/25/20 Date Received: 11/18/20

Project: Port of Tacoma, Parcel 40, F&BI 011334

Date Extracted: 11/19/20 Date Analyzed: 11/19/20

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx Sample Extracts Passed Through a Silica Gel Column Prior to Analysis

Sample ID Laboratory ID	$rac{ ext{Diesel Range}}{ ext{(C}_{10} ext{-C}_{25})}$	$rac{ ext{Motor Oil Range}}{ ext{(C}_{25} ext{-C}_{36} ext{)}}$	Surrogate (% Recovery) (Limit 47-140)
GEI-MW11-1120 ₀₁₁₃₃₄₋₀₁	<50	<250	127
GEI-MW3-1120 011334-02	<50	<250	115
Method Blank	<50	<250	116

ENVIRONMENTAL CHEMISTS

Date of Report: 11/25/20 Date Received: 11/18/20

Project: Port of Tacoma, Parcel 40, F&BI 011334

Date Extracted: 11/19/20 Date Analyzed: 11/19/20

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Sample ID Laboratory ID	$\frac{\text{Diesel Range}}{(C_{10}\text{-}C_{25})}$	$\frac{\text{Motor Oil Range}}{(C_{25}\text{-}C_{36})}$	Surrogate (% Recovery) (Limit 41-152)
GEI-MW11-1120 011334-01	150 x	<250	109
GEI-MW3-1120 011334-02	430 x	540 х	103
Method Blank	<50	<250	95

ENVIRONMENTAL CHEMISTS

Date of Report: 11/25/20 Date Received: 11/18/20

Project: Port of Tacoma, Parcel 40, F&BI 011334

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 011333-05 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Benzene	ug/L (ppb)	<1	<1	nm
Toluene	ug/L (ppb)	<1	<1	nm
Ethylbenzene	ug/L (ppb)	<1	<1	nm
Xylenes	ug/L (ppb)	<3	<3	nm
Gasoline	ug/L (ppb)	<100	<100	nm

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/L (ppb)	50	106	65-118
Toluene	ug/L (ppb)	50	99	72 - 122
Ethylbenzene	ug/L (ppb)	50	97	73-126
Xylenes	ug/L (ppb)	150	96	74-118
Gasoline	ug/L (ppb)	1,000	97	69-134

ENVIRONMENTAL CHEMISTS

Date of Report: 11/25/20 Date Received: 11/18/20

Project: Port of Tacoma, Parcel 40, F&BI 011334

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: Laboratory Control Sample Silica Gel

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	83	102	61-133	20

ENVIRONMENTAL CHEMISTS

Date of Report: 11/25/20 Date Received: 11/18/20

Project: Port of Tacoma, Parcel 40, F&BI 011334

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	89	108	63-142	19

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Ph. (206) 285-8282 Seattle, WA 98119-2029 3012 16th Avenue West Friedman & Bruya, Inc. GET-MW11-1120 GEI-MW3-1120 City, State, ZIP Seattle, WA 98104 Address 108 S. Washington Company Crest Consultino Report To Ca. Hainsworth R. Jones Sample ID Email Relinquished by: Received by: Relinquished by: Received by: 00 01 A-E Lab ID St. 300 SIGNATURE 118,70 Sampled Date 0359 944 Sampled Rusty Jews
PROJECT NAME
PROJECT NAME Time REMARKS Project specific RLs? - Yes / No DAS tracker for the Parzel 40 出記 Sample Type NA NA Rusty James # of Jars U PRINT NAME NWTPH-Dx NWTPH-Gx BTEX EPA 8021 NWTPH-HCID INVOICE TO ANALYSES REQUESTED VOCs EPA 8260 PO# PAHs EPA 8270 Crete Consulting PCBs EPA 8082 COMPANY ☐ Archive samples b Standard turnaround Rush charges authorized by: Samples received at 2 °C Default: Dispose after 30 days Page#

11-18-20 1,8,20 DATE

> TIME 1316

SAMPLE CHAIN OF CUSTODY

TURNAROUND TIME

SAMPLE DISPOSAL

Notes

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S.

3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

December 1, 2020

Grant Hainsworth, Project Manager Crete Consulting 108 S. Washington St., Suite 300 Seattle, WA 98104

Dear Mr Hainsworth:

Included are the results from the testing of material submitted on November 19, 2020 from the Port of Tacoma Parcel 40, F&BI 011362 project. There are 8 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Rusty Jones, Jamie Stevens

CTC1201R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on November 19, 2020 by Friedman & Bruya, Inc. from the Crete Consulting Port of Tacoma Parcel 40, F&BI 011362 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Crete Consulting
011362 -01	GEI-MW10-1120
011362 -02	GEI-MW5-1120
011362 -03	GEI-MW8-1120
011362 -04	GEI-MW6-1120
011362 -05	DUP-1120
011362 -06	GEI-MW1-1120

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 12/01/20 Date Received: 11/19/20

Project: Port of Tacoma Parcel 40, F&BI 011362

Date Extracted: 11/24/20 Date Analyzed: 11/25/20

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Sample ID Laboratory ID	Benzene	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (% Recovery) (Limit 52-124)
GEI-MW10-1120 011362-01	<1	<1	<1	<3	<100	87
GEI-MW5-1120 011362-02	<1	<1	<1	<3	<100	87
GEI-MW8-1120 011362-03	<1	<1	<1	<3	130	88
GEI-MW6-1120 011362-04	<1	<1	<1	<3	<100	88
DUP-1120 011362-05	<1	<1	<1	<3	<100	87
GEI-MW1-1120 ₀₁₁₃₆₂₋₀₆	46	6.7	22	14	1,700	102
Method Blank 00-2430 MB	<1	<1	<1	<3	<100	84

ENVIRONMENTAL CHEMISTS

Date of Report: 12/01/20 Date Received: 11/19/20

Project: Port of Tacoma Parcel 40, F&BI 011362

Date Extracted: 11/20/20 Date Analyzed: 11/24/20

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx Sample Extracts Passed Through a Silica Gel Column Prior to Analysis

Sample ID Laboratory ID	$rac{ ext{Diesel Range}}{ ext{(C}_{10} ext{-C}_{25} ext{)}}$	$rac{ ext{Motor Oil Range}}{ ext{(C}_{25} ext{-C}_{36} ext{)}}$	Surrogate (% Recovery) (Limit 41-152)
GEI-MW10-1120 011362-01	<50	<250	111
GEI-MW5-1120 ₀₁₁₃₆₂₋₀₂	<50	<250	116
GEI-MW8-1120 ₀₁₁₃₆₂₋₀₃	550	<250	122
GEI-MW6-1120 ₀₁₁₃₆₂₋₀₄	<50	<250	118
DUP-1120 011362-05	<50	<250	116
GEI-MW1-1120 011362-06	8,500	320 x	123
Method Blank 00-2574 MB	<50	<250	122

ENVIRONMENTAL CHEMISTS

Date of Report: 12/01/20 Date Received: 11/19/20

Project: Port of Tacoma Parcel 40, F&BI 011362

Date Extracted: 11/20/20 Date Analyzed: 11/20/20

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Sample ID Laboratory ID	$rac{ ext{Diesel Range}}{ ext{(C}_{10} ext{-C}_{25})}$	$rac{ ext{Motor Oil Range}}{ ext{(C}_{25} ext{-C}_{36} ext{)}}$	Surrogate (% Recovery) (Limit 41-152)
GEI-MW10-1120 011362-01	720 x	430 x	129
GEI-MW5-1120 011362-02	370 х	<250	114
GEI-MW8-1120 011362-03	2,400 x	820 x	79
GEI-MW6-1120 ₀₁₁₃₆₂₋₀₄	270 x	440 x	117
DUP-1120 011362-05	730 x	400 x	127
GEI-MW1-1120 011362-06	25,000	5,600	134
Method Blank _{00-2574 MB}	<50	<250	122

ENVIRONMENTAL CHEMISTS

Date of Report: 12/01/20 Date Received: 11/19/20

Project: Port of Tacoma Parcel 40, F&BI 011362

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 011371-02 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Benzene	ug/L (ppb)	<1	<1	nm
Toluene	ug/L (ppb)	<1	<1	nm
Ethylbenzene	ug/L (ppb)	<1	<1	nm
Xylenes	ug/L (ppb)	<3	<3	nm
Gasoline	ug/L (ppb)	<100	<100	nm

Laboratory Code: Laboratory Control Sample

		Percent					
	Reporting	Spike	Recovery	Acceptance			
Analyte	Units	Level	LCS	Criteria			
Benzene	ug/L (ppb)	50	107	65-118			
Toluene	ug/L (ppb)	50	100	72 - 122			
Ethylbenzene	ug/L (ppb)	50	99	73 - 126			
Xylenes	ug/L (ppb)	150	97	74 - 118			
Gasoline	ug/L (ppb)	1,000	98	69-134			

ENVIRONMENTAL CHEMISTS

Date of Report: 12/01/20 Date Received: 11/19/20

Project: Port of Tacoma Parcel 40, F&BI 011362

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: Laboratory Control Sample Silica Gel

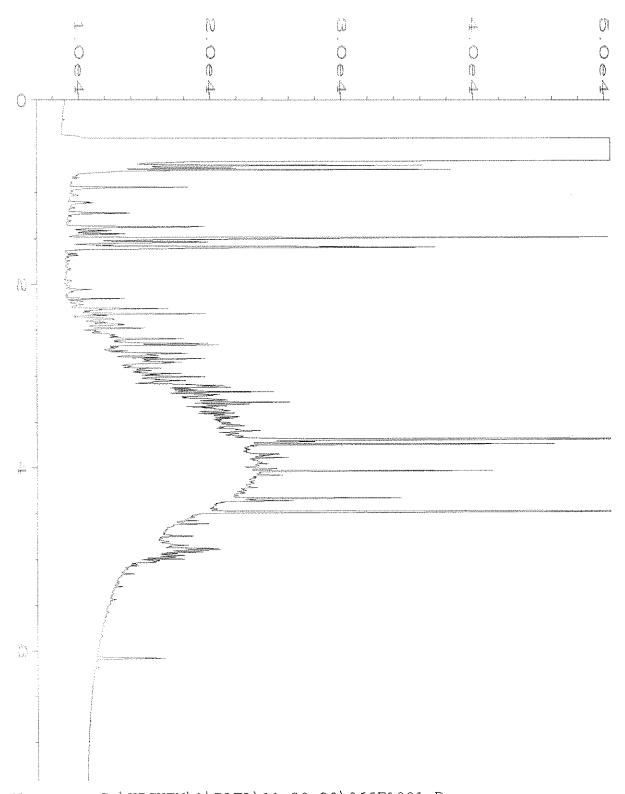
			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	94	95	63-142	1

ENVIRONMENTAL CHEMISTS

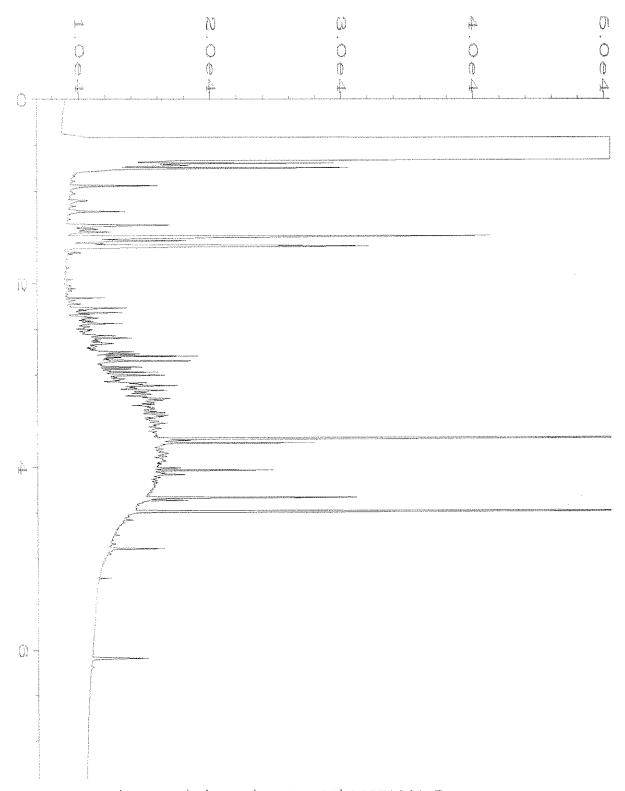
Date of Report: 12/01/20 Date Received: 11/19/20

Project: Port of Tacoma Parcel 40, F&BI 011362

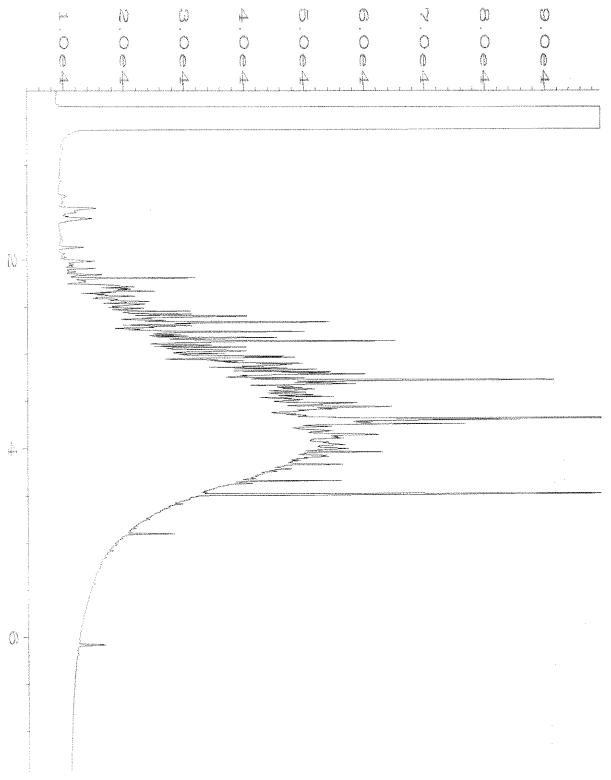
QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

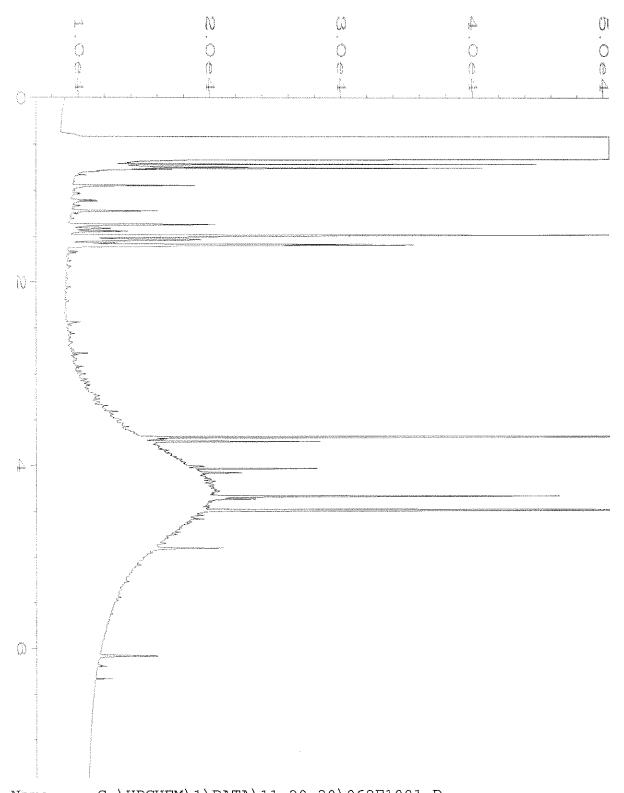

Laboratory Code: Laboratory Control Sample

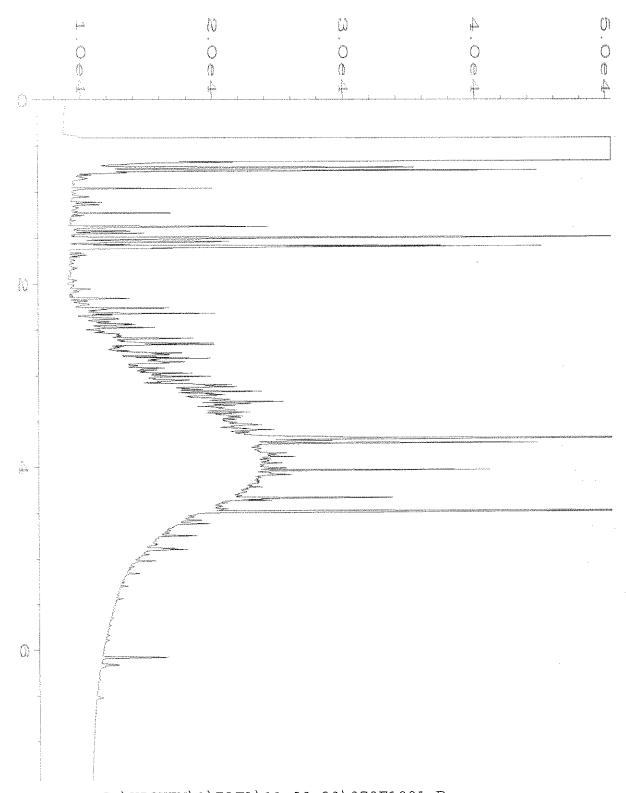
			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	96	96	63-142	0

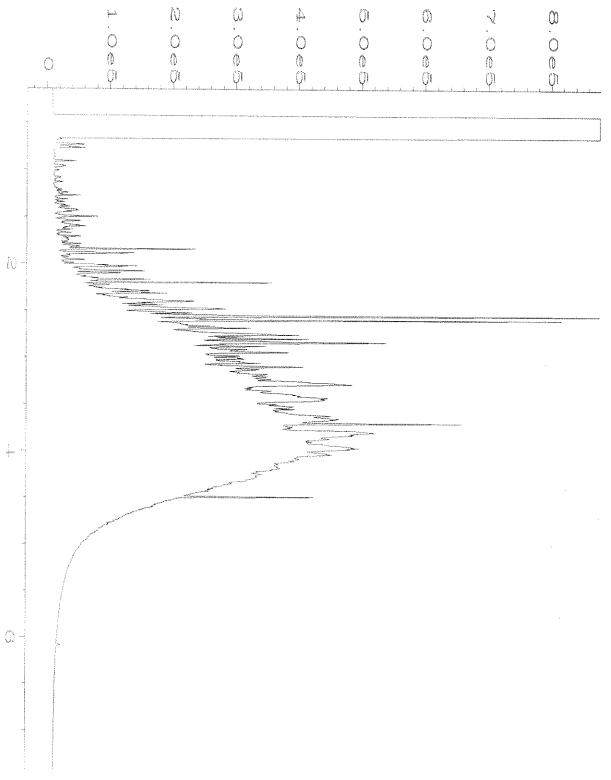

ENVIRONMENTAL CHEMISTS

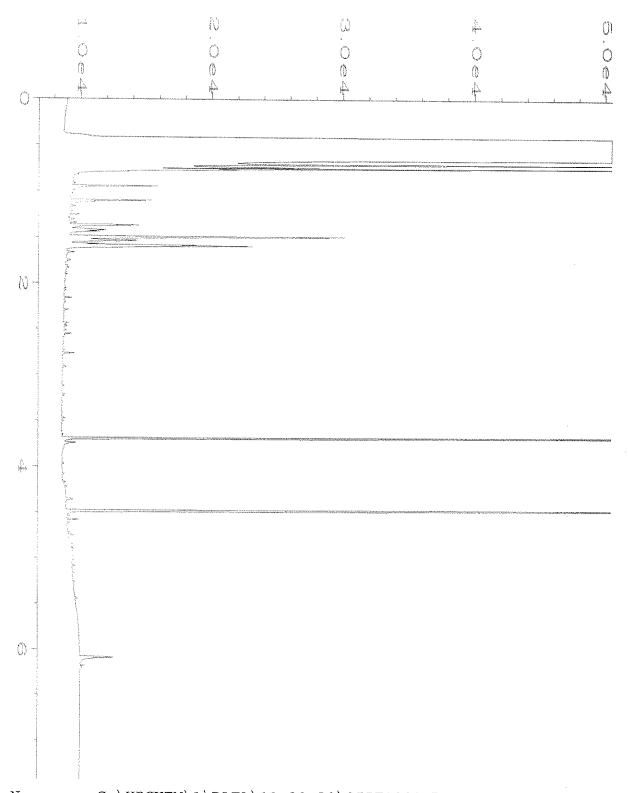
Data Qualifiers & Definitions

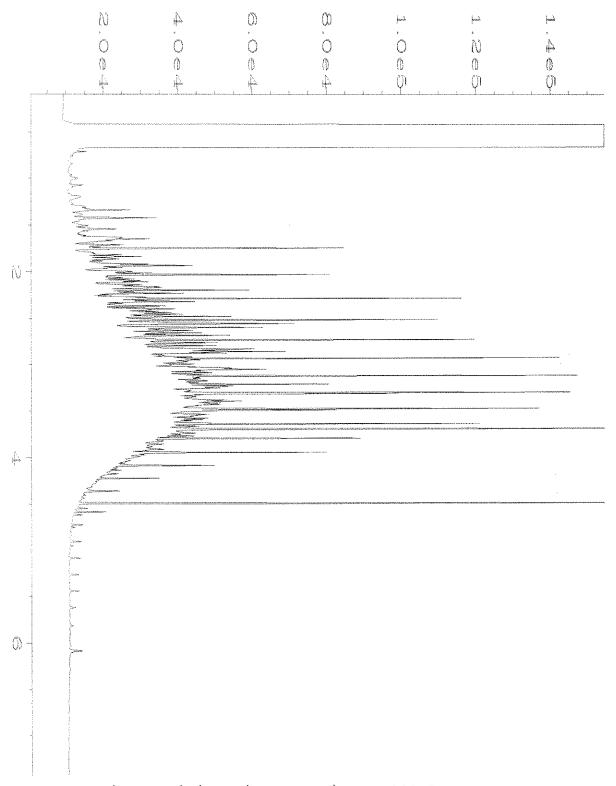

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

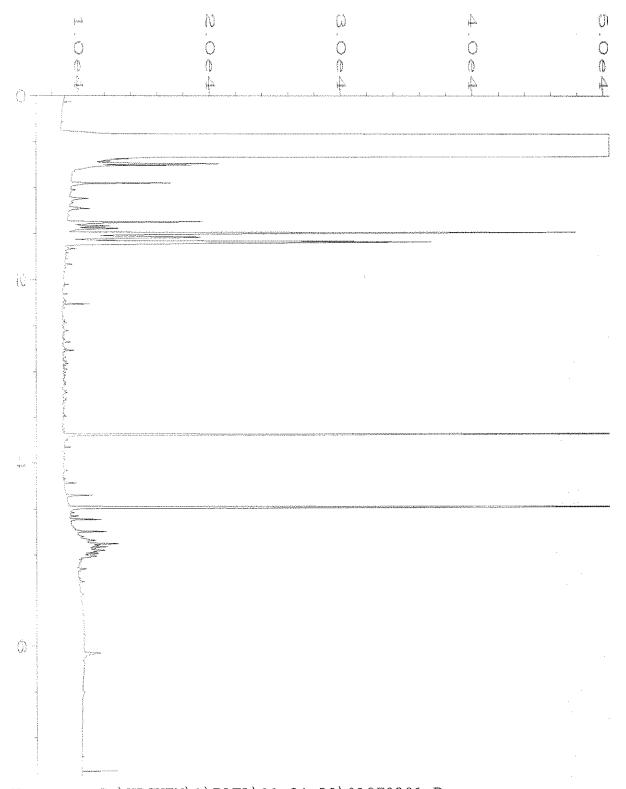

```
: C:\HPCHEM\1\DATA\11-20-20\066F1001.D
Data File Name
                                                Page Number
Vial Number
Operator
                 : TL
                                                                 : 1
                                                                : 66
Instrument
                 : GC1
                                                Injection Number: 1
Sample Name
                 : 011362-01
                                                Sequence Line : 10
Run Time Bar Code:
                                                Instrument Method: DX.MTH
Acquired on
             : 20 Nov 20 11:34 PM
                                                Analysis Method : DEFAULT.MTH
Report Created on: 30 Nov 20 10:47 AM
```

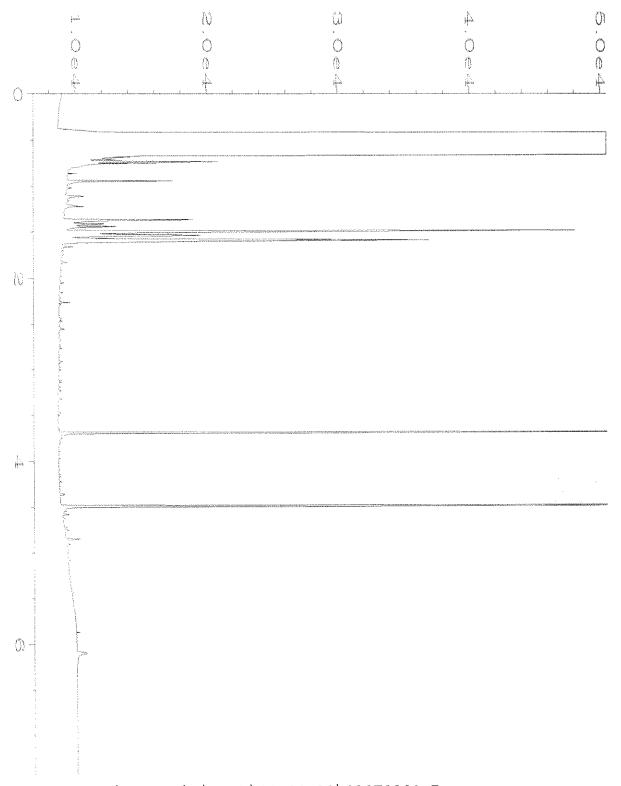


```
: C:\HPCHEM\1\DATA\11-20-20\067F1001.D
Data File Name
                                                   Page Number
Operator
                  : TL
                                                   Vial Number : 67
Instrument
                  : GC1
                                                   Injection Number: 1
                  : 011362-02
Sample Name
                                                   Sequence Line : 10
Run Time Bar Code:
                                                   Instrument Method: DX.MTH
Acquired on : 20 Nov 20 11:46 PM Report Created on: 30 Nov 20 10:47 AM
                                                   Analysis Method : DEFAULT.MTH
```

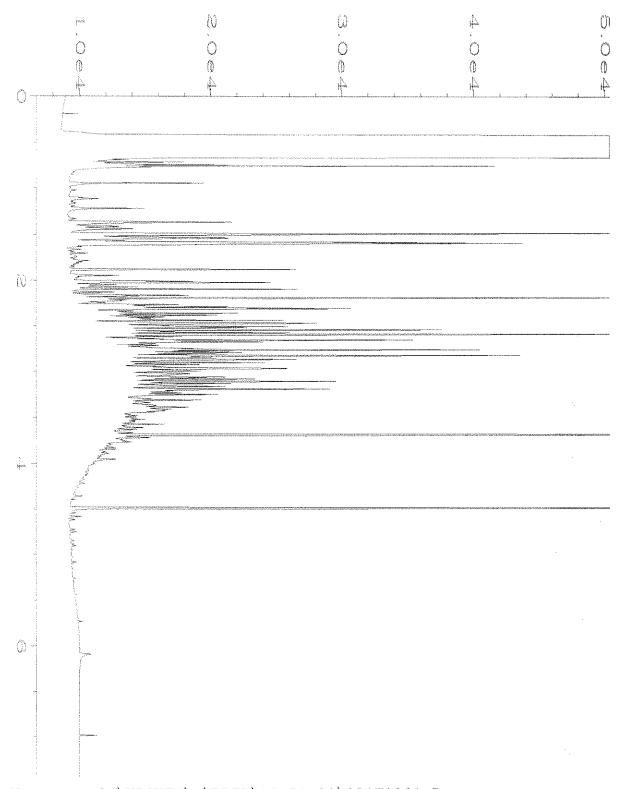


```
: C:\HPCHEM\1\DATA\11-20-20\068F1001.D
Data File Name
                                                Page Number
Operator
                 : TL
                                                                 : 1
                                                Vial Number : 68
Injection Number : 1
Instrument
                 : GC1
Sample Name
               : 011362-03
                                                Sequence Line : 10
Run Time Bar Code:
                                                Instrument Method: DX.MTH
Acquired on : 20 Nov 20 11:57 PM
Report Created on: 30 Nov 20 10:48 AM
                                                Analysis Method : DEFAULT.MTH
```

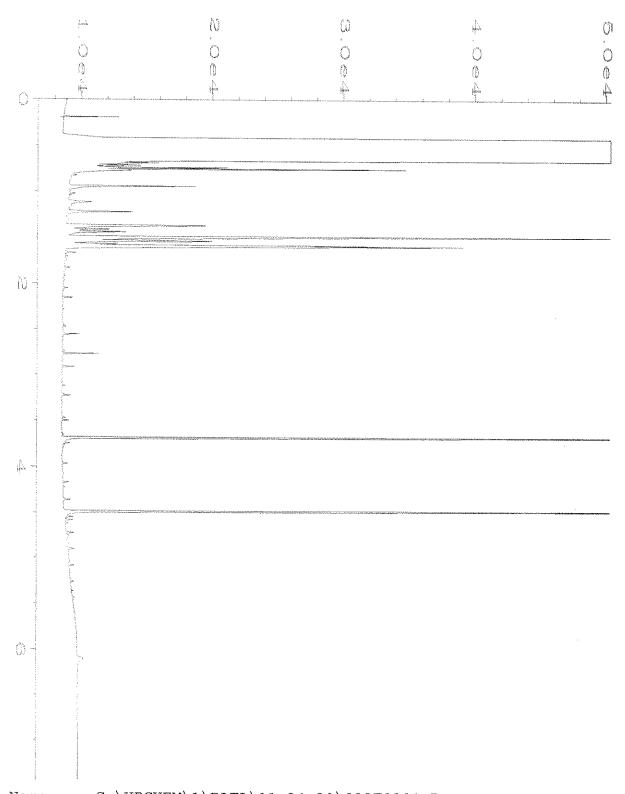


```
: C:\HPCHEM\1\DATA\11-20-20\069F1001.D
Data File Name
                                                    Page Number : 1
Vial Number : 69
Injection Number : 1
                  : TL
Operator
Instrument
                  : GC1
                                                                       : 69
Sample Name
                  : 011362-04
                                                    Sequence Line
Run Time Bar Code:
                                                                      : 10
                                                    Instrument Method: DX.MTH
Acquired on
              : 21 Nov 20 00:09 AM
                                                    Analysis Method : DEFAULT.MTH
Report Created on: 30 Nov 20 10:48 AM
```

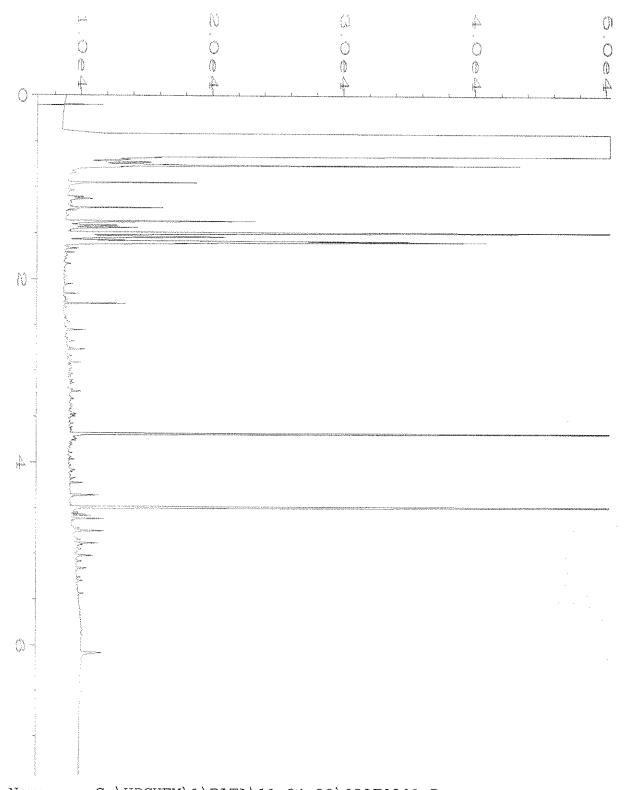


: C:\HPCHEM\1\DATA\11-20-20\070F1001.D Data File Name Page Number Operator : TL : 70 Vial Number Instrument : GC1 Injection Number: 1 : 011362-05 Sample Name Sequence Line : 10 Run Time Bar Code: Instrument Method: DX.MTH Acquired on : 21 Nov 20 00:20 AM Analysis Method : DEFAULT.MTH Report Created on: 30 Nov 20 10:48 AM

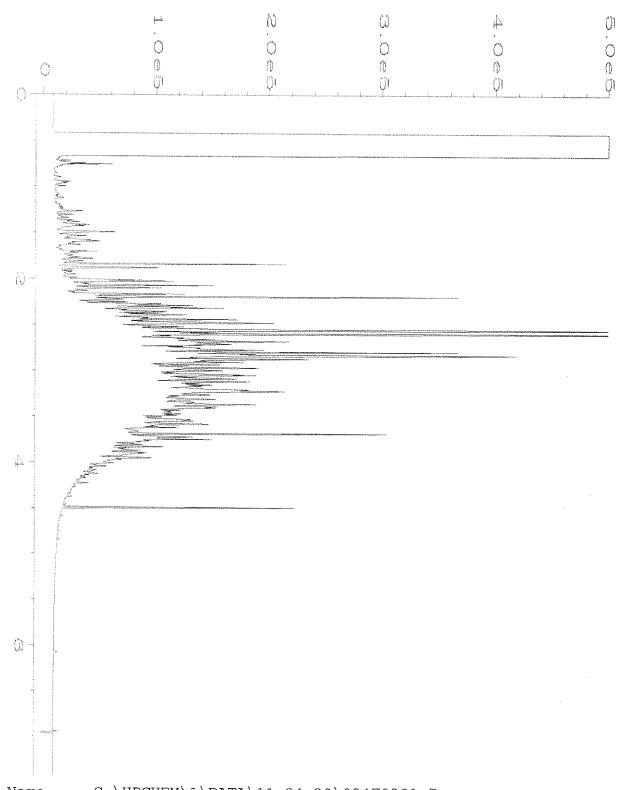


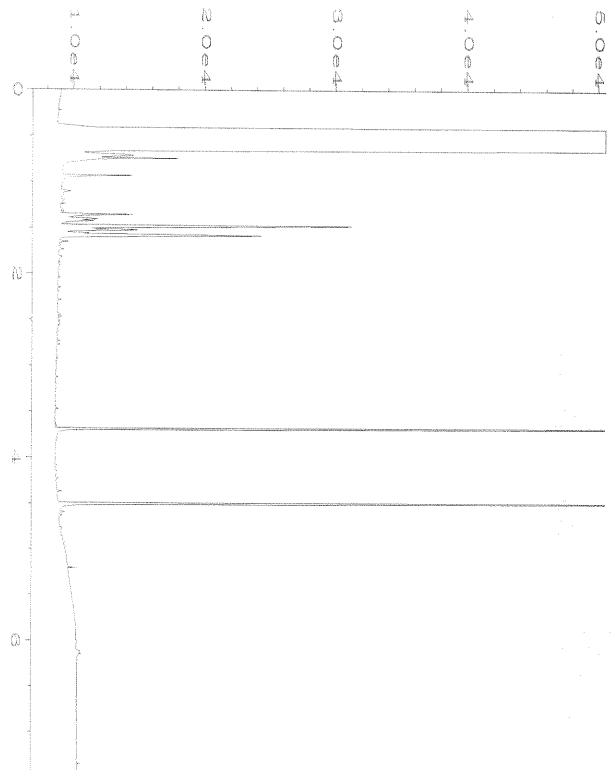

```
Data File Name : C:\HPCHEM\1\DATA\11-20-20\071F1201.D
Operator
                : TL
                                             Page Number
                                             Vial Number : 71
Instrument
                : GC1
Sample Name : 011362-06
                                             Injection Number: 1
Run Time Bar Code:
                                             Sequence Line : 12
            : 21 Nov 20 00:55 AM
Acquired on
                                             Instrument Method: DX.MTH
Report Created on: 30 Nov 20 10:48 AM
                                            Analysis Method : DEFAULT.MTH
```

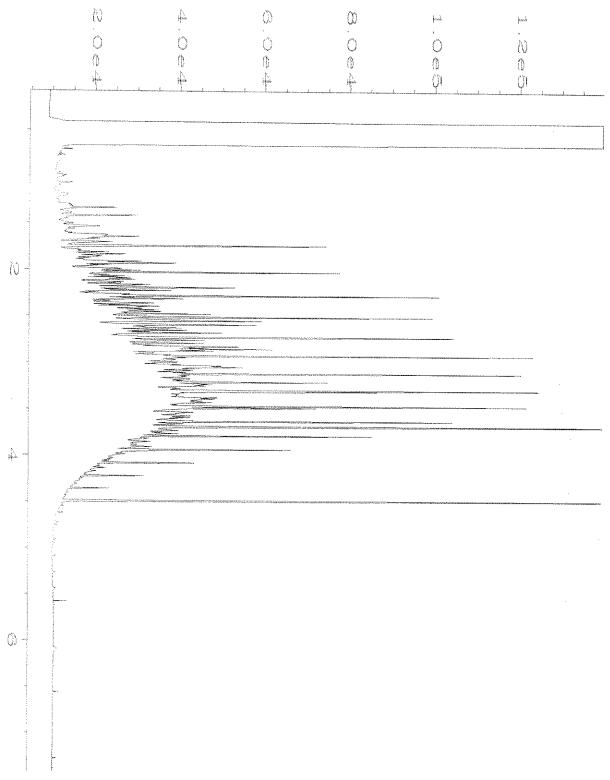


```
Data File Name
               : C:\HPCHEM\1\DATA\11-20-20\055F1001.D
Operator
                                                Page Number
                                                                : 1
                                                Vial Number : 55
Injection Number : 1
Instrument
                : GC1
Sample Name
                : 00-2574 mb
                                                Sequence Line : 10
Run Time Bar Code:
Acquired on : 20 Nov 20 09:28 PM
                                                Instrument Method: DX.MTH
Report Created on: 30 Nov 20 10:48 AM
                                               Analysis Method : DEFAULT.MTH
```




```
: C:\HPCHEM\1\DATA\11-24-20\020F0301.D
Data File Name
                                              Page Number
Operator
                : TL
                                              Vial Number
                                                              : 20
Instrument
                : GC1
                                              Injection Number: 1
Sample Name
               : 011362-02 sg
                                              Sequence Line
                                                            : 3
Run Time Bar Code:
                                              Instrument Method: DX.MTH
Acquired on
            : 24 Nov 20 11:29 AM
Report Created on: 30 Nov 20 10:44 AM
                                              Analysis Method : DEFAULT.MTH
```




```
Data File Name
              : C:\HPCHEM\1\DATA\11-24-20\021F0301.D
                                            Page Number
                : TL
Operator
                                            Vial Number
Instrument
                : GC1
                                             Injection Number: 1
Sample Name
               : 011362-03 sg
                                             Sequence Line : 3
Run Time Bar Code:
                                             Instrument Method: DX.MTH
            : 24 Nov 20 11:40 AM
Acquired on
                                            Analysis Method : DEFAULT.MTH
Report Created on: 30 Nov 20 10:44 AM
```



```
Data File Name : C:\HPCHEM\1\DATA\11-24-20\003F0201.D
Operator
                                             Page Number
                : TL
                                                             : 1
Instrument
                : GC1
                                             Vial Number
Sample Name : 500 Dx 61-146D
                                             Injection Number: 1
Run Time Bar Code:
                                             Sequence Line : 2
                                             Instrument Method: DX.MTH
Acquired on : 24 Nov 20 05:29 AM
Report Created on: 30 Nov 20 10:45 AM
                                             Analysis Method : DEFAULT.MTH
```

Ph. (206) 285-8282 3012 16th Avenue West Seattle, WA 98119-2029 Friedman & Bruya, Inc. CHARLES CO Dur-1120 GET-MUNB-1170 Phone____ Company Crete Consulting GET-MWb-1170 GEJ-MW5-1120 City, State, ZIP Seattle, WX 98104 Address 108 S. Washington, Ste 300 951-MW10-1170 Report To R. Jones G. Hainsworth GEI-MWI-1120 011362 Sample ID Email Relinquished by: Received by: Received by:/ Relinquished by 90 ر 0 $\mathcal{C}_{\mathcal{O}}$ Lab ID SIGNATURE 11 19 70 Date Sampled <u>三</u>8 you o SAMPLE CHAIN OF CUSTODY ME Time Sampled SAMPLERS (signature)
PROJECT NAME
Pout of Tacoma,
Parcel 40 257 0310 ohho 285 0600 0 600 Project specific RLs? - Yes / No REMARKS with and without SAC と有外 Sample Type # of Jars PRINT NAME Л $\mathcal{T}\mathcal{D}$ 51 7 ano (NWTPH-Dx NWTPH-Gx Cova NWTPH-HCID INVOICE TO ANALYSES REQUESTED PO# PAHs EPA 8270 PCBs EPA 8082 COMPANY 1-19-20 VWY/E03 CousuHing Samples received at □ Other ☐ Archive samples □ RUSH ______ Default: Dispose after 30 days Rush charges authorized by: SAMPLE DISPOSAL 三 2 2 8 DATE CO Notes TIME

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S.

3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

December 1, 2020

Grant Hainsworth, Project Manager Crete Consulting 108 S. Washington St., Suite 300 Seattle, WA 98104

Dear Mr Hainsworth:

Included are the results from the testing of material submitted on November 20, 2020 from the Port of Tacoma, Parcel 40, F&BI 011391 project. There are 8 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Rusty Jones, Jamie Stevens

CTC1201R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on November 20, 2020 by Friedman & Bruya, Inc. from the Crete Consulting Port of Tacoma, Parcel 40, F&BI 011391 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Crete Consulting
011391 -01	GEI-MW9-1120
011391 -02	GEI-MW4-1120
011391 -03	GEI-MW2-1120

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 12/01/20 Date Received: 11/20/20

Project: Port of Tacoma, Parcel 40, F&BI 011391

Date Extracted: 11/25/20 Date Analyzed: 11/25/20

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (% Recovery) (Limit 52-124)
GEI-MW9-1120 011391-01	<1	<1	<1	<3	360	86
GEI-MW4-1120 011391-02	<1	<1	<1	<3	<100	85
GEI-MW2-1120 ₀₁₁₃₉₁₋₀₃	<1	<1	<1	<3	<100	86
Method Blank 00-2593 MB	<1	<1	<1	<3	<100	84

ENVIRONMENTAL CHEMISTS

Date of Report: 12/01/20 Date Received: 11/20/20

Project: Port of Tacoma, Parcel 40, F&BI 011391

Date Extracted: 11/23/20 Date Analyzed: 11/24/20

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx Sample Extracts Passed Through a Silica Gel Column Prior to Analysis

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	$rac{ ext{Diesel Range}}{ ext{(C}_{10} ext{-C}_{25} ext{)}}$	$\frac{\text{Motor Oil Range}}{(C_{25}\text{-}C_{36})}$	Surrogate (% Recovery) (Limit 41-152)
GEI-MW9-1120 011391-01	920	<250	136
GEI-MW4-1120 011391-02	<50	<250	126
GEI-MW2-1120 ₀₁₁₃₉₁₋₀₃	<50	<250	87
Method Blank 00-2585 MB	<50	<250	120

ENVIRONMENTAL CHEMISTS

Date of Report: 12/01/20 Date Received: 11/20/20

Project: Port of Tacoma, Parcel 40, F&BI 011391

Date Extracted: 11/23/20 Date Analyzed: 11/23/20

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	$\frac{\text{Diesel Range}}{(\text{C}_{10}\text{-}\text{C}_{25})}$	$rac{ ext{Motor Oil Range}}{ ext{(C}_{25} ext{-C}_{36} ext{)}}$	Surrogate (% Recovery) (Limit 47-140)
GEI-MW9-1120 011391-01	2,900	<250	95
GEI-MW4-1120 011391-02	370 x	<250	139
GEI-MW2-1120 011391-03	1,500 x	330 х	89
Method Blank 00-2585 MB	<50	<250	130

ENVIRONMENTAL CHEMISTS

Date of Report: 12/01/20 Date Received: 11/20/20

Project: Port of Tacoma, Parcel 40, F&BI 011391

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 011391-01 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Benzene	ug/L (ppb)	<1	<1	nm
Toluene	ug/L (ppb)	<1	<1	nm
Ethylbenzene	ug/L (ppb)	<1	<1	nm
Xylenes	ug/L (ppb)	<3	<3	nm
Gasoline	ug/L (ppb)	360	370	1

Laboratory Code: Laboratory Control Sample

		Percent					
	Reporting	Spike	Recovery	Acceptance			
Analyte	Units	Level	LCS	Criteria			
Benzene	ug/L (ppb)	50	102	65-118			
Toluene	ug/L (ppb)	50	97	72 - 122			
Ethylbenzene	ug/L (ppb)	50	95	73 - 126			
Xylenes	ug/L (ppb)	150	94	74-118			
Gasoline	ug/L (ppb)	1,000	98	69-134			

ENVIRONMENTAL CHEMISTS

Date of Report: 12/01/20 Date Received: 11/20/20

Project: Port of Tacoma, Parcel 40, F&BI 011391

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: Laboratory Control Sample Silica Gel

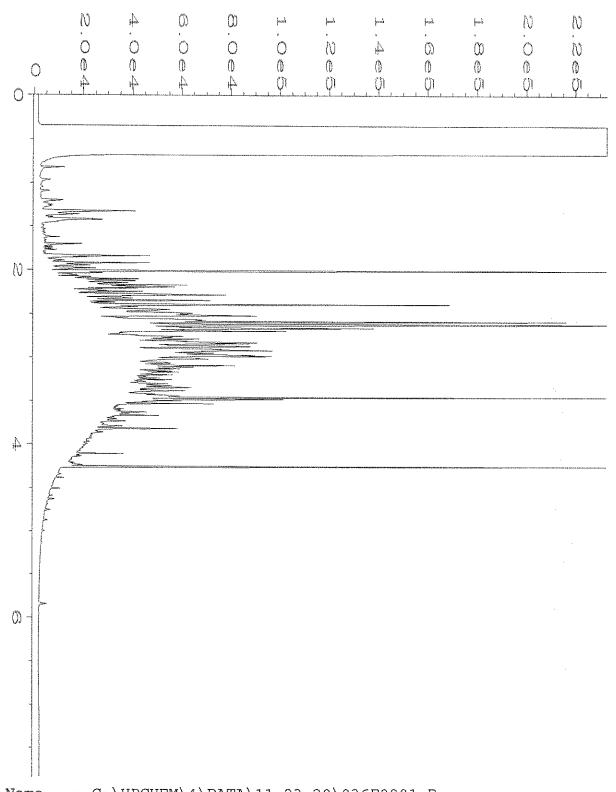
			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	89	90	63-142	1

ENVIRONMENTAL CHEMISTS

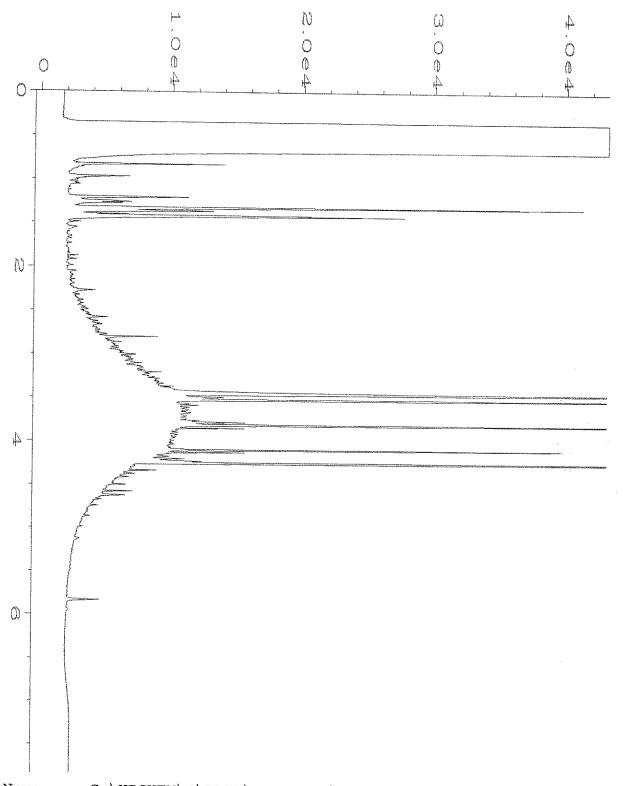
Date of Report: 12/01/20 Date Received: 11/20/20

Project: Port of Tacoma, Parcel 40, F&BI 011391

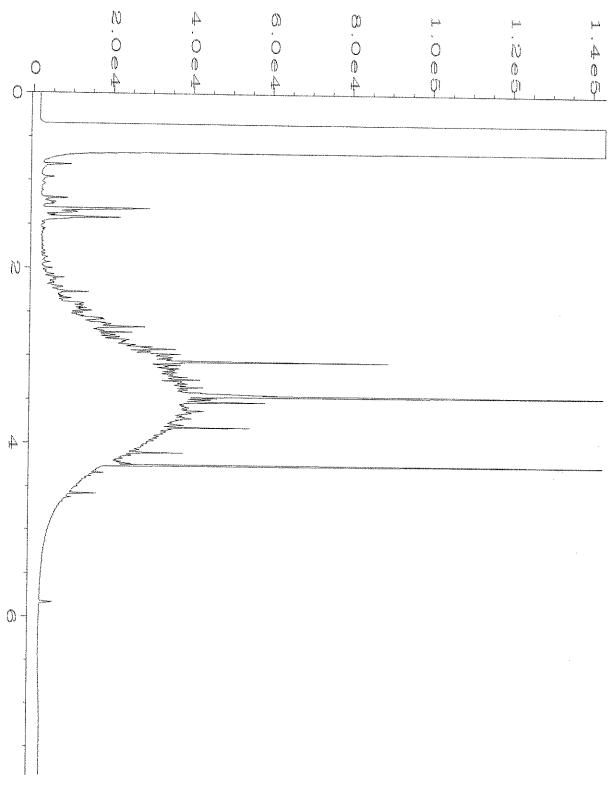
QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

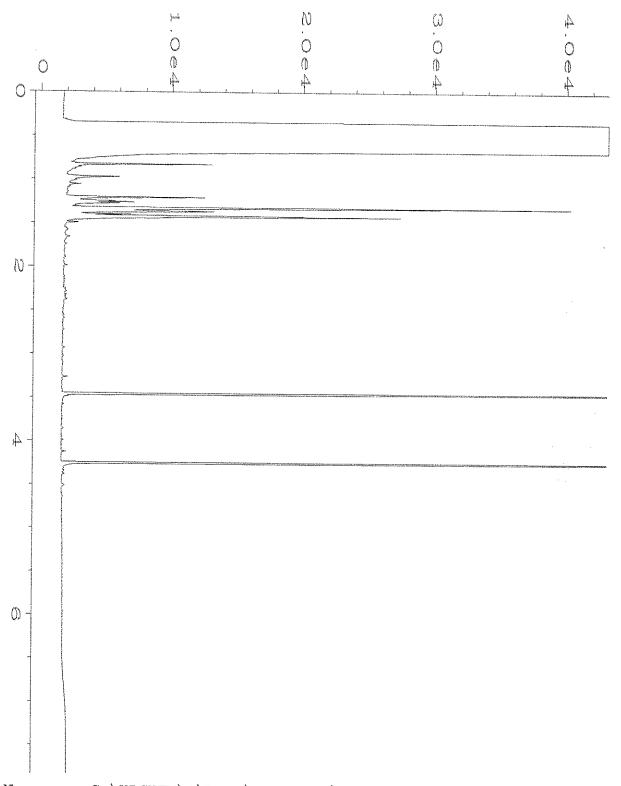

Laboratory Code: Laboratory Control Sample

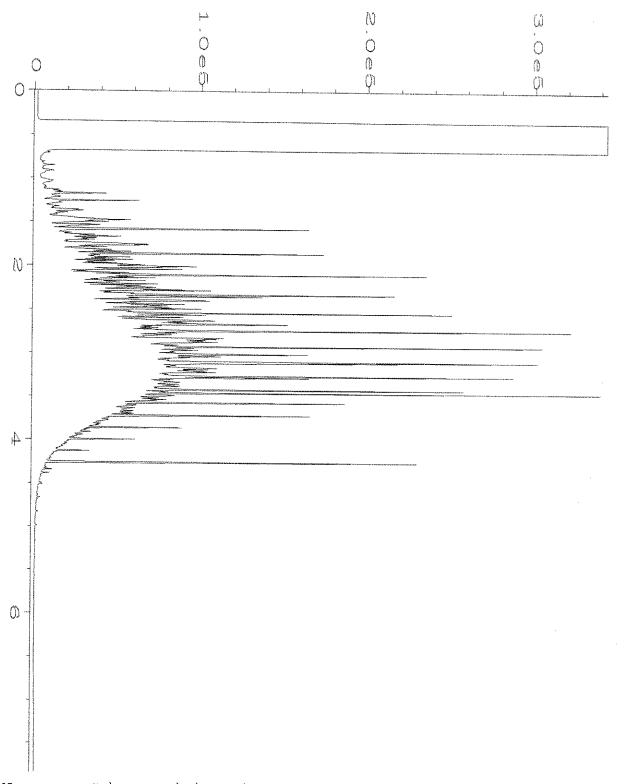
			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	100	104	61-133	4

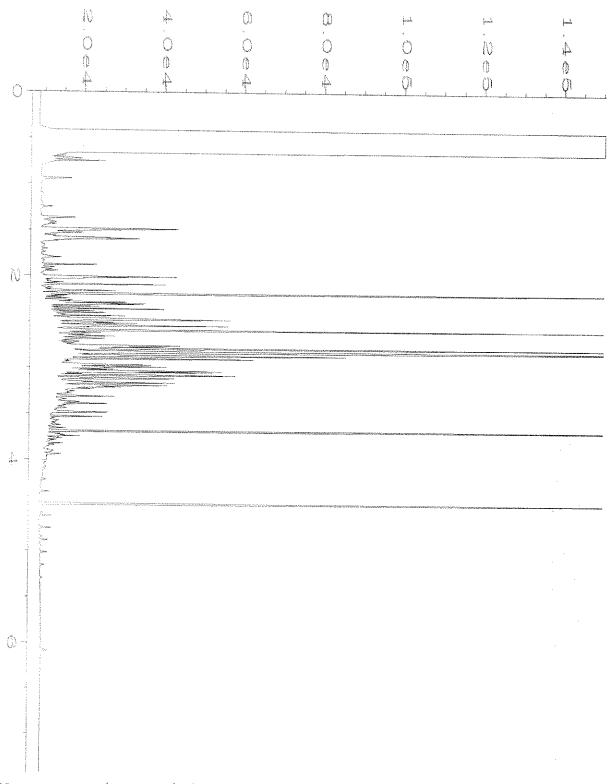

ENVIRONMENTAL CHEMISTS

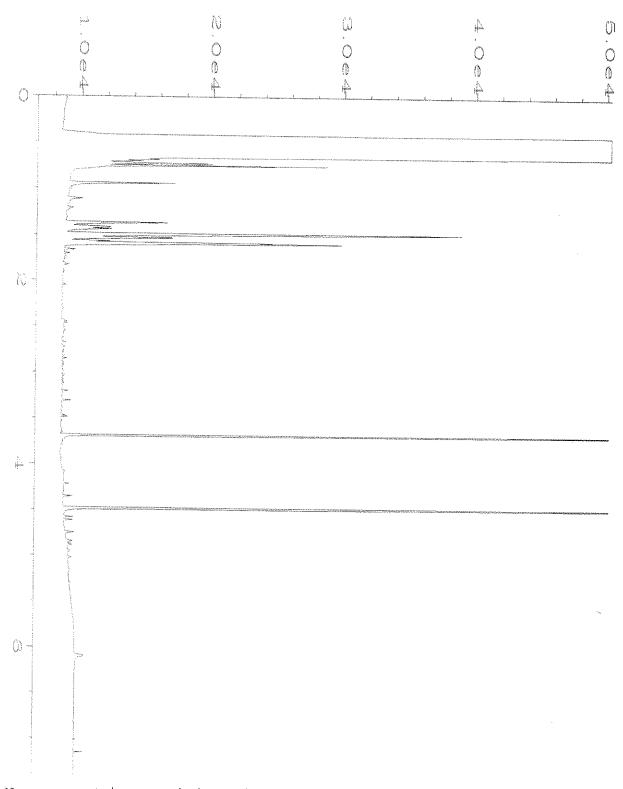
Data Qualifiers & Definitions


- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

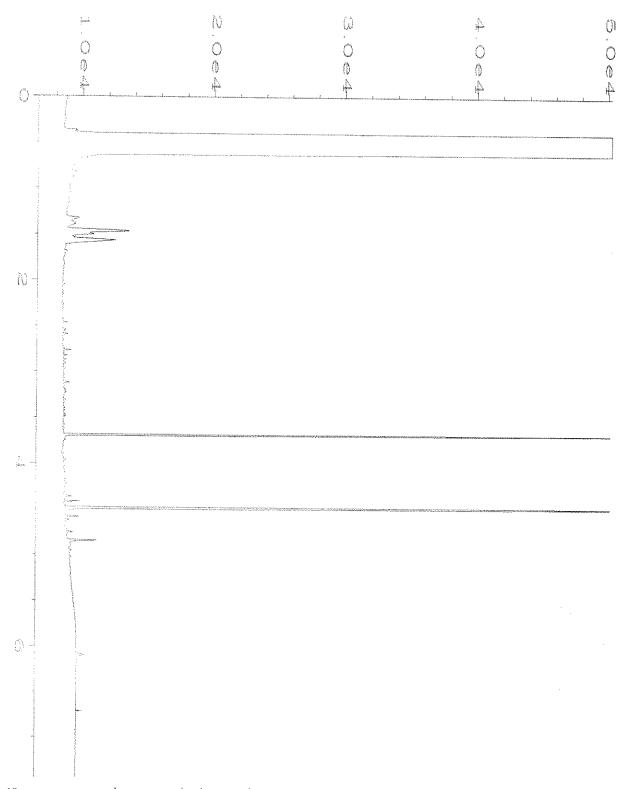

```
Data File Name
                 : C:\HPCHEM\4\DATA\11-23-20\036F0801.D
Operator
                 : TL
                                                 Page Number
                                                 Vial Number : 36
Injection Number : 1
Instrument
                 : GC#4
Sample Name
                 : 011391-01
                                                 Sequence Line : 8
Run Time Bar Code:
Acquired on
                 : 23 Nov 20 05:26 PM
                                                 Instrument Method: DX.MTH
Report Created on: 24 Nov 20 09:01 AM
                                                 Analysis Method : DEFAULT.MTH
```

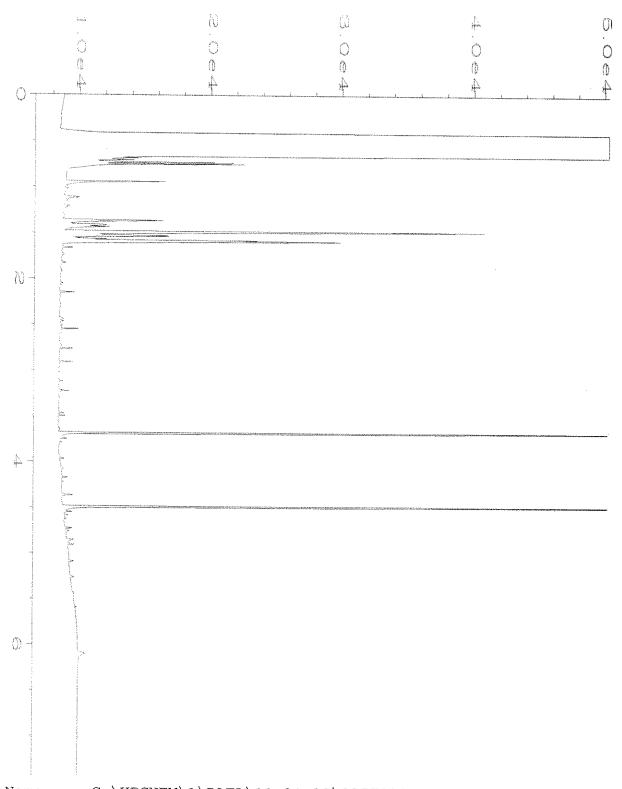


```
Data File Name
              : C:\HPCHEM\4\DATA\11-23-20\037F0801.D
Operator
                : TL
                                             Page Number
Instrument
                : GC#4
                                             Vial Number
                                                              : 37
Sample Name
                : 011391-02
                                             Injection Number: 1
Run Time Bar Code:
                                             Sequence Line : 8
Acquired on
            : 23 Nov 20 05:38 PM
                                             Instrument Method: DX.MTH
Report Created on: 24 Nov 20
                           09:02 AM
                                             Analysis Method : DEFAULT.MTH
```

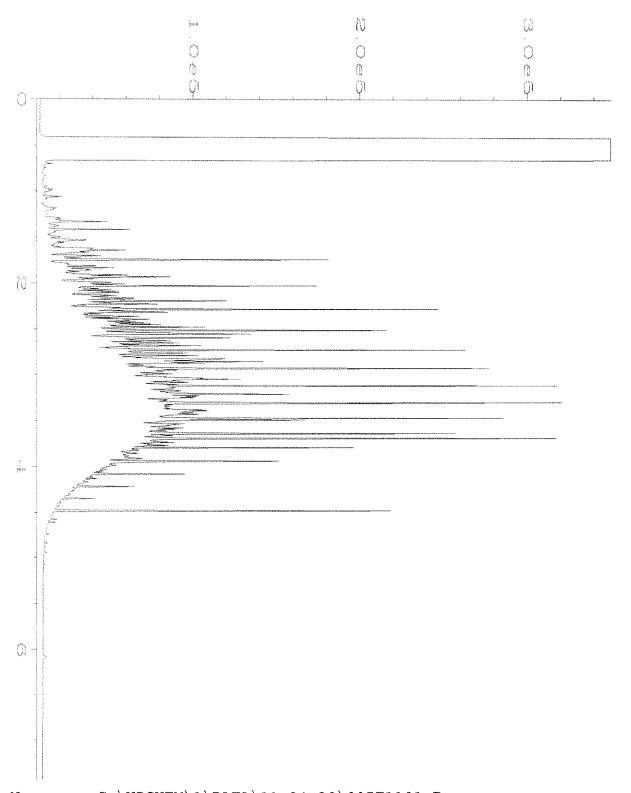


```
: C:\HPCHEM\4\DATA\11-23-20\038F0801.D
Data File Name
Operator
                : TL
                                              Page Number
                                                               : 1
Instrument
                : GC#4
                                              Vial Number
                                                               : 38
Sample Name
                : 011391-03
                                              Injection Number: 1
Run Time Bar Code:
                                              Sequence Line : 8
Acquired on
                                              Instrument Method: DX.MTH
                : 23 Nov 20 05:51 PM
Report Created on: 24 Nov 20
                            09:02 AM
                                              Analysis Method : DEFAULT.MTH
```




```
Data File Name
                 : C:\HPCHEM\4\DATA\11-23-20\032F0801.D
Operator
                  : TL
                                                   Page Number
Vial Number
Instrument
                  : GC#4
                                                                      : 32
Sample Name
                                                   Injection Number : 1
Sequence Line : 8
                  : 00-2585 mb
Run Time Bar Code:
Acquired on
                 : 23 Nov 20 04:36 PM
                                                   Instrument Method: DX.MTH
Report Created on: 24 Nov 20 09:01 AM
                                                   Analysis Method : DEFAULT.MTH
```




```
Data File Name
                : C:\HPCHEM\4\DATA\11-23-20\005F0401.D
Operator
                 : TL
                                                Page Number
Vial Number
Instrument
                 : GC#4
Sample Name
                : 1000 Dx 61-146C
                                                Injection Number: 1
Run Time Bar Code:
                                                Sequence Line : 4
Acquired on
             : 23 Nov 20 01:35 PM
                                                Instrument Method: DX.MTH
Report Created on: 24 Nov 20 09:00 AM
                                               Analysis Method : DEFAULT.MTH
```


```
Data File Name
               : C:\HPCHEM\1\DATA\11-24-20\030F0501.D
Operator
                : TL
                                               Page Number
Vial Number
                                                               : 1
Instrument
                : GC1
                                                               : 30
Sample Name
               : 011391-02 sg
                                               Injection Number: 1
Run Time Bar Code:
                                               Sequence Line : 5
Acquired on : 24 Nov 20 01:35 PM
                                               Instrument Method: DX.MTH
Report Created on: 25 Nov 20 08:32 AM
                                              Analysis Method : DEFAULT.MTH
```



```
Data File Name
                : C:\HPCHEM\1\DATA\11-24-20\025F0301.D
Operator
                  : TL
                                                   Page Number : 1
Vial Number : 25
Instrument
                  : GC1
Sample Name
                                                   Injection Number : 1
Sequence Line : 3
                  : 00-2585 mb sg
Run Time Bar Code:
Acquired on
                  : 24 Nov 20 12:26 PM
                                                   Instrument Method: DX.MTH
Report Created on: 25 Nov 20 08:32 AM
                                                   Analysis Method : DEFAULT.MTH
```


Report Created on: 25 Nov 20 08:33 AM Analysis Method : DEFAULT.MTH

Address 108 S. Washing Company_ City, State, ZIP_ rete Jours G. Hairsworth, Stevens 뻴 33

Phone_

$\bar{\Omega}$	SAMPLE CHAIN OF CUSTODY	DY ME 11-20-5
	Ţ	
V	, 	Souls
	PROJECT NAME	PO#
ļ	Pert et Tacoma,	
1	Panel 40	
	REMARKS	INVOICE TO
	With and without SCAC	
	Project energine RT e? - Vec / No	

Page#_

TURNAROUND TIME

4 W 2

	Email 88104	ashington Ste 300
	With and without SGC Project specific RLs? - Yes / No	Pert of Tacoma, Parcel 40
ANALYSES REQUESTED	INVOICE TO	PO#
STED	☐ Archive samples ☐ Other Default: Dispose after 30 days	Standard turnaround RUSH Rush charges authorized by:

Ph. (206) 285-8282	2029	3012 16th Avenue West Rec	Friedman & Bruya, Inc. Reli	1-1					GEI-MWZ-1120	6EI-MW4-1120	GEIT-MM9-1120	Sample ID
Received by:	Relinquished by:	Received by:	Relinquished by:	SI					&	02	5/A-0	Lab ID
NANAMAN AND AND AND AND AND AND AND AND AND A	" (0)	かりん	Jones	SIGNATURE					<		11.70.20	Date Sampled
ant of resource sprayer and containing and accompanies and acc	25								8533	6447	Polog	Time Sampled
	10110	20/02	Roty Jose							-	が発	Sample Type
		5	4	PRINT NAME					<u> </u>	F	7	# of Jars
		0	pre	YT',				·	×	×	~	NWTPH-Dx
		2	♪	AM					×	×	><	NWTPH-Gx
		\$		F				·	×	*	*	BTEX EPA 8021
•												NWTPH-HCID
	***************************************											VOCs EPA 8260
		+1	5									PAHs EPA 8270
		6	Sele (PCBs EPA 8082
	Ì	口のなり	Cusulting	COMPANY								
			アペク	PAN								
-			3	Y		Sami						
						ples:						
			=			cei	-		*•			
	100	120/2	2020	DATE		Samples received at \	. \					Notes
	-	<u>س</u> ا	<u>で</u> 二	HMIT		00	cho.					6

TO: Sarah Weeks, Port of Tacoma

FROM: Grant Hainsworth – CRETE Consulting Inc.

PROJECT: Parcel 40, Building 600 – Port of Tacoma, Tacoma, WA

Professional Services 101486.01

SUBJECT: Review of NWTPH-Dx Chromatograms (PSA No. 071251)

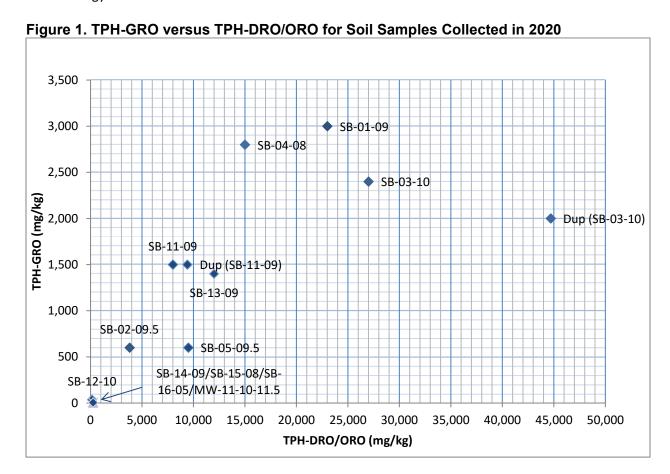
DATE: January 21, 2022

CC: Rob Healy – Port of Tacoma

This memorandum presents a review of TPH chromatograms from soil and groundwater samples collected at Building 600. Likely sources in the vicinity of Building 600 include diesel and Bunker C associated with former railyard operations and lube oil from a documented pipe leak. Diesel is most likely to be the primary contaminant since the investigation locations were in close proximity to the former True's Oil 1.25-million-gallon diesel tank, a 4-inch diesel line between the former tank and the former Milwaukee Railyard, and a former 14,000-gallon diesel UST on the Former Milwaukee Railyard.

Although there was no known gasoline source, gasoline was regularly detected in soil and groundwater samples. These gasoline detections usually occurred when TPH-DRO and TPH-ORO were also detected. In addition, the TPH-GRO concentration generally increased in proportion of the TPH-DRO/ORO concentration suggesting that the TPH-GRO response was primarily due to the middle distillate rather than gasoline-range hydrocarbons. Figure 1 illustrates this relationship based on analytical results for the soil samples collected in 2020. Groundwater data collected in 2020 from direct push probes and monitoring wells exhibit a similar pattern.

Since the TPH-GRO concentrations were present at concentrations in proportion to the TPH-DRO/ORO concentration, chromatograms were reviewed to better understand the nature of contamination. The NWTPH-Dx chromatograms for soil and groundwater samples collected during 2020 are included in Appendix E of the summary report (CRETE 2021). The NWTPH-Dx chromatograms suggest that the primary contaminant is a middle distillate, such as diesel, but when compared to the diesel standard, there is additional response in the lighter hydrocarbon range. Figure 2 provides a selection of chromatograms to illustrate this observation. Furthermore, it was suggested by the analytical laboratory that the gasoline concentrations are primarily due to this lighter fraction middle distillate rather than gasoline, although the presence of a small amount of weathered gasoline cannot be ruled out. Historically, lighter middle distillates such as kerosene were added to diesel fuels to improve cold weather properties.


While some weathered gasoline or kerosene may be present, it's possible that the reported TPH-GRO concentrations are not accurately quantified. Since the TPH-GRO quantification is performed based on the gasoline standard and the contaminants present do not resemble the standard, the reported TPH-GRO concentrations may be reported at significantly greater concentrations than are actually present in the gasoline-range.

Soil and groundwater samples were also collected and analyzed in 2019 (AnchorQEA 2019a,b). These data follow a similar pattern with the exception of 2 soil samples that had reported TPH-GRO concentrations that exceeded or were approximately equivalent to the TPH-DRO/ORO concentration

(P40-UST-03-8 and P40-UST-04-14.5, respectively). The contaminant was identified by the analytical laboratory as a middle distillate and the chromatograms (Figure 3) are similar to the 2020 soil sample chromatograms. As noted above, the TPH-GRO concentrations may be reported at significantly greater concentrations that are actually present due to the quantification method. In addition to the elevated TPH-GRO concentration reported for sample P40-UST-03-8, these two samples were also notable for the lower reported TPH-DRO concentrations relative to the TPH-GRO concentrations plus the concentrations did not appear to reflect the contamination descriptions provided on the borehole logs. One possible explanation for the low TPH-DRO concentrations is that these samples were analyzed by a different laboratory and extraction of these samples was performed using microwave extraction rather than ultrasonic extraction. It's possible that the microwave extraction method did not adequately extract the petroleum from the finer-grained portions of the soil matrix.

In summary, the primary source of contamination at Building 600 is a middle distillate, likely diesel fuel. Lighter fraction hydrocarbons such as weathered gasoline or kerosene are present but the TPH-GRO concentrations appear to be driven by bleed over of the middle distillate and may be reported at higher concentrations than are actually present. The elevated TPH-GRO concentration reported for 2019 sample P40-UST-03-8 does not appear to accurately reflect site conditions and some TPH-DRO/ORO concentrations for 2019 soil samples may be under reported due to the use of the microwave extraction methodology.

Enclosures:

Figures 2 and 3

01/21/22 Page 2 of 2

Appendix G

Tidal Study

1 Tidal Study

A tidal study was conducted at the Parcel 40 site at the Port of Tacoma between November 2 and November 6, 2020. The tidal study was conducted to evaluate the extent of the tidal influence across Parcel 40 via use of the existing monitor wells. Tidal lags or the delay between low tide, from NOAA tidal data, and low water observed in each well measured. These tidal lags were used to time the groundwater monitoring event conducted during November 2020.

1.1 Data Collection

Water levels were measured using eight Level TROLL 400 data loggers, one BaroTROLL data logger, and a Heron H01L Oil/Water Interface probe. All transducers were set to record on a 3-minute interval. The Level TROLL 400 data loggers measure and record pressure and temperature and record a calculated level depth to water (function of water pressure and programmed depth). Data loggers were installed in monitoring wells MW-1, MW-3, MW-4, MW-5, MW-6, MW-8, MW-10, MW-11. Tidal measurements were downloaded from tide gauge NOAA station 9446484 in Tacoma, WA. Barometric pressure at the site was recorded by the BaroTROLL data logger mounted to a utility pole in the vicinity of the monitor wells.

Depth to water was measured manually to the nearest 0.01-feet concurrent with transducer installation and removal. Transducer water levels were corrected for barometric pressure change and corrected for instrument drift using the manual water level measurements and In-Situ Win-Situ 5.7.6.1 software. No specific conductivity measurements (indicates the salinity of water) were collected during the tidal study, although water quality parameters were collected during the groundwater monitoring event conducted from November 18 through November 20, 2020. This water quality data confirms fresh water conditions present at the site with specific conductance ranges from 905 to 2,697 micro-Siemens per centimeter.

1.2 Results

Corrected hydrographs are included in Figure F-1. Tidal efficiency is the ratio of variations in water levels observed in wells relative to measured tidal fluctuation. For this study, the tidal efficiency was calculated for tide cycles from November 2 through November 6, 2020 (Tables F-1, F-2, F-3, and F-4). The tidal efficiencies ranged from 4.9% to 16.3%, depending on the specific tide cycle (day).

Tidal lags are the delay between peaks/troughs (minimums/maximums) in a given tide cycle, and ranged from 2 hours and 9 minutes (2:09) to 6:26 over the duration of this tidal study at Parcel 40.

Average water levels were calculated based on water levels measured from November 2 to November 6, as measured by the Level TROLLs (barometrically corrected and instrument drift corrected). Contours of average water level elevations are used to estimate the net groundwater flow direction(s). The hydraulic gradient based on the average water levels ranged from about 0.001 to 0.002 ft/ft for flow southwest to the Puyallup River. The hydraulic gradient

was about 0.0001 ft/ft for flow to the north and northwest but there very limited data available.

One well, MW-1, did not exhibit tidal efficiency above 0%. The numerical data consistently demonstrated no clear higher high water peaks during the observed tidal cycles. It is plausible that the compacted soils and likely fill below Building 600 disrupt groundwater flow between MW-1 and the shoreline and nearshore tidal environments. The hydrograph of MW-1 water elevations is included as Figure F-2.

Groundwater flow direction at any given time is partially a function of the corresponding tide. To determine general groundwater flow direction(s), a net groundwater flow figure was calculated. The water elevation data recorded from 5:06PM on November 2 through 9:24AM on November 6 was averaged at each studied well and the data were contoured to map the average water elevation conditions. Figure F-3 depicts the Net Groundwater Flow from this tidal study. Groundwater flow on the western half of the site flows west/southwest towards the Puyallup River. Groundwater flow to the east and northeast of Building 600 generally flows north with a groundwater high, or mound, at the very east end of Building 600.

Tables

Table 7-1 Summary of Tidal Variations, 11/2-3/2020

Table 7-2 Summary of Tidal Variations, 11/4/2020

Table 7-3 Summary of Tidal Variations, 11/5/2020

Table 7-4 Summary of Tidal Variations, 11/6/2020

Figures

Figure 7-1 Tidal Study Hydrograph

Figure 7-2 Tidal Study MW-1 Hydrograph

Figure 7-3 Net Groundwater Flow

Port of Tacoma, Parcel 40 Tidal Study Table 7-1 Summary of Tidal Variations 11/2/2020 through 11/3/2020

	Tidal LLW		al LLW Tidal HHW I		Monitor Well Observed LLW		Monitor Wel	l Observed HHW	Lag Time	Tidal	
Well	Time	Elevation	Time	Elevation	Time	Elevation	Time	Elevation	LLW	Efficiency	Comment
MW-1	23:54	-0.84	7:00	11.62	5:20	8.37			5:26	-1.49%	No clear HHW peak
MW-3	23:54	-0.84	7:00	11.62	3:20	7.84	11:32	8.93	3:26	11.43%	
MW-4	23:54	-0.84	7:00	11.62	2:52	7.77	10:37	8.80	2:58	12.10%	
MW-5	23:54	-0.84	7:00	11.62	2:33	6.93	9:48	8.76	2:39	6.81%	
MW-6	23:54	-0.84	7:00	11.62	3:49	7.92	12:01	8.79	3:55	14.32%	
MW-8	23:54	-0.84	7:00	11.62	3:51	7.80	11:39	8.64	3:57	14.83%	
MW-10	23:54	-0.84	7:00	11.62	2:30	6.33	9:27	8.86	2:36	4.92%	
MW-11	23:54	-0.84	7:00	11.62	3:24	7.09	10:42	8.64	3:30	8.04%	

NOTES:

All elevation data in feet above mean lower low water.

LLW- Lower Low Water

Port of Tacoma, Parcel 40 Tidal Study Table 7-2 Summary of Tidal Variations 11/4/2020

	Tidal LLW Tidal HHW		Monitor We	ell Observed LLW	Monitor Well Ol	oserved HHW	Lag Time	Tidal			
Well	Time	Elevation	Time	Elevation	Time	Elevation	Time	Elevation	LLW	Efficiency	Comment
MW-1	0:30	-0.94	7:42	11.70	6:35	8.35			6:05	-1.51%	No clear HHW peak
MW-3	0:30	-0.94	7:42	11.70	4:14	7.91	12:02	8.97	3:44	11.92%	
MW-4	0:30	-0.94	7:42	11.70	3:07	7.83	11:04	8.83	2:37	12.64%	
MW-5	0:30	-0.94	7:42	11.70	3:06	7.05	10:24	8.81	2:36	7.18%	
MW-6	0:30	-0.94	7:42	11.70	4:49	8.01	13:19	8.83	4:19	15.41%	
MW-8	0:30	-0.94	7:42	11.70	4:15	7.88	12:30	8.69	3:45	15.60%	
MW-10	0:30	-0.94	7:42	11.70	2:39	6.47	10:03	8.91	2:09	5.18%	
MW-11	0:30	-0.94	7:42	11.70	3:30	7.19	11:27	8.69	3:00	8.43%	

NOTES:

All elevation data in feet above mean lower low water.

LLW- Lower Low Water

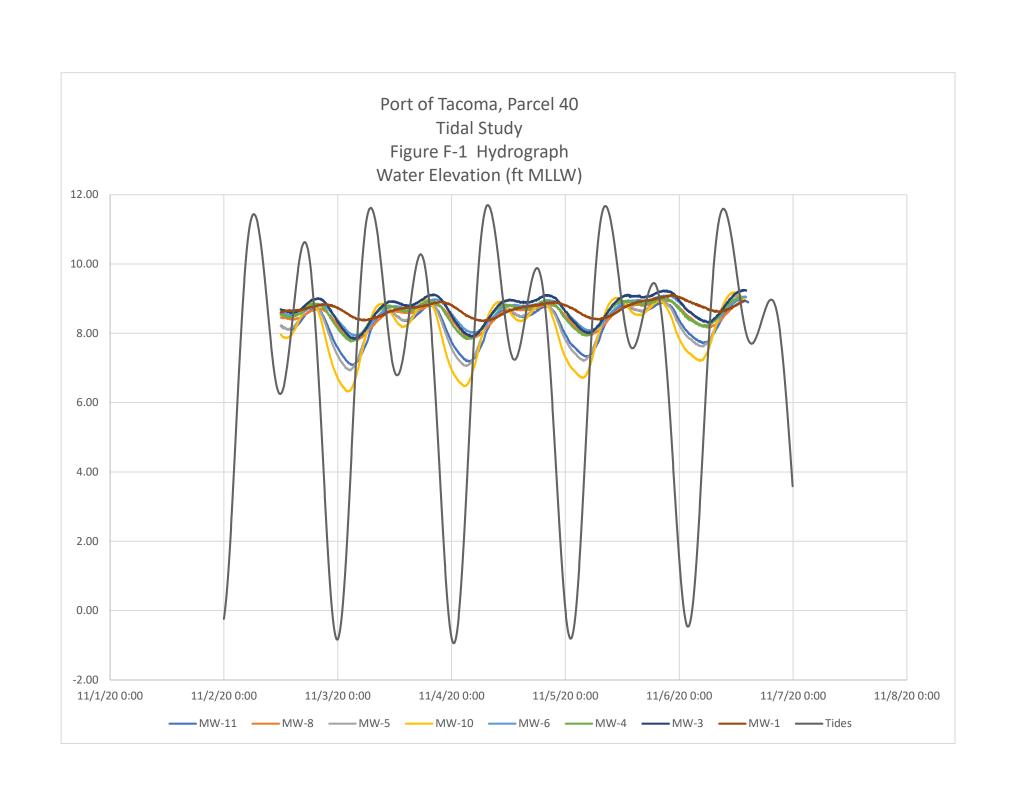
Port of Tacoma, Parcel 40 Tidal Study Table 7-3 Summary of Tidal Variations 11/5/2020

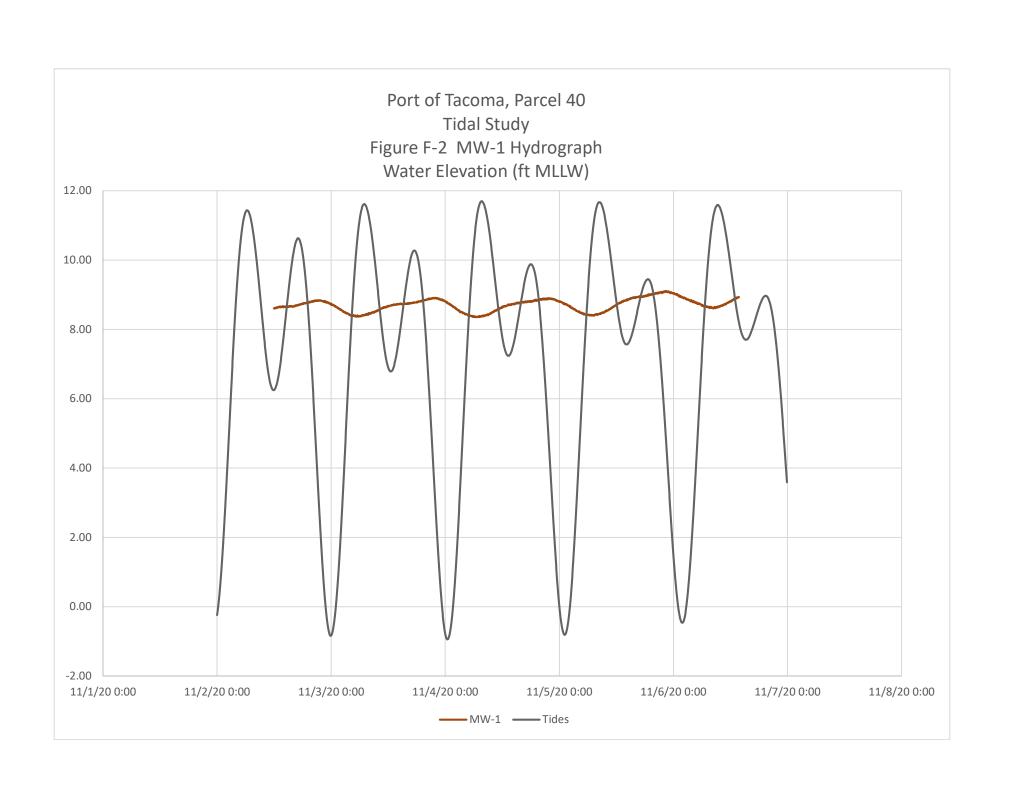
	Tidal LLW		Tidal HHW		Monitor Well Observed LLW		Monitor Well Ol	Lag Time	Tidal		
Well	Time	Elevation	Time	Elevation	Time	Elevation	Time	Elevation	LLW	Efficiency	Comment
MW-1	1:06	-0.81	8:30	11.67	6:26	8.40			5:20	-1.49%	No clear HHW peak
MW-3	1:06	-0.81	8:30	11.67	4:38	8.01	13:05	9.11	3:32	11.35%	
MW-4	1:06	-0.81	8:30	11.67	4:22	7.93	13:10	8.95	3:16	12.24%	
MW-5	1:06	-0.81	8:30	11.67	3:54	7.20	11:06	8.93	2:48	7.21%	
MW-6	1:06	-0.81	8:30	11.67	5:16	8.07	13:10	8.95	4:10	14.18%	
MW-8	1:06	-0.81	8:30	11.67	5:18	7.94	13:42	8.83	4:12	14.02%	
MW-10	1:06	-0.81	8:30	11.67	3:39	6.71	10:48	9.03	2:33	5.38%	
MW-11	1:06	-0.81	8:30	11.67	4:24	7.33	12:30	8.82	3:18	8.38%	

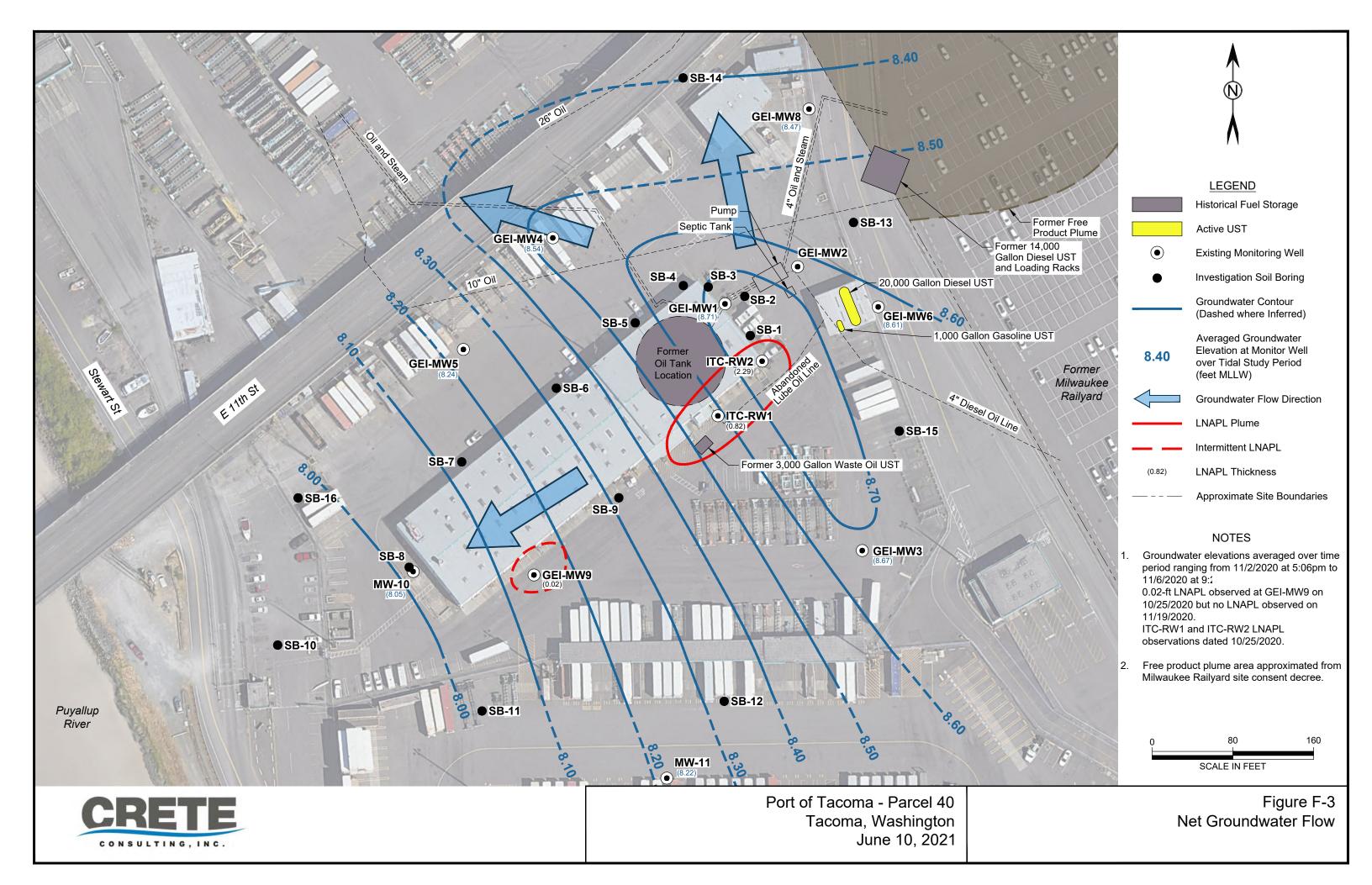
NOTES:

All elevation data in feet above mean lower low water.

LLW- Lower Low Water


Port of Tacoma, Parcel 40 Tidal Study Tidal 7-4 Summary of Tidal Variations 11/6/2020


	Tidal LLW Tidal HHW		Monitor Wel	l Observed LLW	Monitor Well O	bserved HHW	Lag Time	Tidal			
Well	Time	Elevation	Time	Elevation	Time	Elevation	Time	Elevation	LLW	Efficiency	Comment
MW-1	1:54	-0.46	9:24	11.59	8:20	8.61			6:26	-1.40%	No clear HHW peak
MW-3	1:54	-0.46	9:24	11.59	5:59	8.31	13:20	9.25	4:05	12.82%	
											Ceased recording
MW-4	1:54	-0.46	9:24	11.59	5:13	8.19			3:19		prior to HHW peak
MW-5	1:54	-0.46	9:24	11.59	5:03	7.62	12:03	9.09	3:09	8.20%	
MW-6	1:54	-0.46	9:24	11.59	6:19	8.3	13:49	9.06	4:25	15.86%	
MW-8	1:54	-0.46	9:24	11.59	6:12	8.16	13:03	8.90	4:18	16.28%	
MW-10	1:54	-0.46	9:24	11.59	4:18	7.20	11:45	9.19	2:24	6.06%	
MW-11	1:54	-0.46	9:24	11.59	5:09	7.72	12:51	8.98	3:15	9.56%	


NOTES:

All elevation data in feet above mean lower low water.

LLW- Lower Low Water

